Deformable Image Registration Using Vision Transformers for Cardiac Motion Estimation from Cine Cardiac MRI Images.

Roshan Reddy Upendra, Richard Simon, Suzanne M Shontz, Cristian A Linte
{"title":"Deformable Image Registration Using Vision Transformers for Cardiac Motion Estimation from Cine Cardiac MRI Images.","authors":"Roshan Reddy Upendra, Richard Simon, Suzanne M Shontz, Cristian A Linte","doi":"10.1007/978-3-031-35302-4_39","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate cardiac motion estimation is a crucial step in assessing the kinematic and contractile properties of the cardiac chambers, thereby directly quantifying the regional cardiac function, which plays an important role in understanding myocardial diseases and planning their treatment. Since the cine cardiac magnetic resonance imaging (MRI) provides dynamic, high-resolution 3D images of the heart that depict cardiac motion throughout the cardiac cycle, cardiac motion can be estimated by finding the optical flow representation between the consecutive 3D volumes from a 4D cine cardiac MRI dataset, thereby formulating it as an image registration problem. Therefore, we propose a hybrid convolutional neural network (CNN) and Vision Transformer (ViT) architecture for deformable image registration of 3D cine cardiac MRI images for consistent cardiac motion estimation. We compare the image registration results of our proposed method with those of the VoxelMorph CNN model and conventional B-spline free form deformation (FFD) non-rigid image registration algorithm. We conduct all our experiments on the open-source Automated Cardiac Diagnosis Challenge (ACDC) dataset. Our experiments show that the deformable image registration results obtained using the proposed method outperform the CNN model and the traditional FFD image registration method.</p>","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-35302-4_39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate cardiac motion estimation is a crucial step in assessing the kinematic and contractile properties of the cardiac chambers, thereby directly quantifying the regional cardiac function, which plays an important role in understanding myocardial diseases and planning their treatment. Since the cine cardiac magnetic resonance imaging (MRI) provides dynamic, high-resolution 3D images of the heart that depict cardiac motion throughout the cardiac cycle, cardiac motion can be estimated by finding the optical flow representation between the consecutive 3D volumes from a 4D cine cardiac MRI dataset, thereby formulating it as an image registration problem. Therefore, we propose a hybrid convolutional neural network (CNN) and Vision Transformer (ViT) architecture for deformable image registration of 3D cine cardiac MRI images for consistent cardiac motion estimation. We compare the image registration results of our proposed method with those of the VoxelMorph CNN model and conventional B-spline free form deformation (FFD) non-rigid image registration algorithm. We conduct all our experiments on the open-source Automated Cardiac Diagnosis Challenge (ACDC) dataset. Our experiments show that the deformable image registration results obtained using the proposed method outperform the CNN model and the traditional FFD image registration method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用视觉变换器进行可变形图像配准,从动态心脏核磁共振成像中估计心脏运动。
精确的心脏运动估计是评估心腔运动和收缩特性的关键步骤,从而直接量化区域心脏功能,这对了解心肌疾病和制定治疗计划起着重要作用。由于电影心脏磁共振成像(MRI)可提供动态、高分辨率的心脏三维图像,描绘出心脏在整个心动周期中的运动情况,因此可以通过从四维电影心脏磁共振成像数据集中找到连续三维体积之间的光流表示来估计心脏运动情况,从而将其表述为一个图像配准问题。因此,我们提出了一种混合卷积神经网络(CNN)和视觉变换器(ViT)架构,用于三维心脏核磁共振成像图像的可变形图像配准,以实现一致的心脏运动估计。我们将所提方法的图像配准结果与 VoxelMorph CNN 模型和传统 B 样条自由形变(FFD)非刚性图像配准算法的结果进行了比较。我们在开源的自动心脏诊断挑战赛(ACDC)数据集上进行了所有实验。实验结果表明,使用所提方法获得的可变形图像配准结果优于 CNN 模型和传统的 FFD 图像配准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Micro-anatomical Model of the Infarcted Left Ventricle Border Zone to Study the Influence of Collagen Undulation. On the possibility of estimating myocardial fiber architecture from cardiac strains. Deformable Image Registration Using Vision Transformers for Cardiac Motion Estimation from Cine Cardiac MRI Images. Prototype of a Cardiac MRI Simulator for the Training of Supervised Neural Networks Extraction of volumetric indices from echocardiography: which deep learning solution for clinical use?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1