{"title":"ARM Virtualization","authors":"Chris Dall, Shih-wei Li, J. Lim, Jason Nieh","doi":"10.1145/3273982.3273987","DOIUrl":null,"url":null,"abstract":"ARM servers are becoming increasingly common, making server technologies such as virtualization for ARM of growing importance. We present the first study of ARM virtualization performance on server hardware, including multi-core measurements of two popular ARM and x86 hypervisors, KVM and Xen. We show how ARM hardware support for virtualization can enable much faster transitions between VMs and the hypervisor, a key hypervisor operation. However, current hypervisor designs, including both Type 1 hypervisors such as Xen and Type 2 hypervisors such as KVM, are not able to leverage this performance benefit for real application workloads on ARMv8.0. We discuss the reasons why and show that other factors related to hypervisor software design and implementation have a larger role in overall performance. Based on our measurements, we discuss software changes and new hardware features, the Virtualization Host Extensions (VHE), added in ARMv8.1 that bridge the gap and bring ARM's faster VM-to-hypervisor transition mechanism to modern Type 2 hypervisors running real applications.","PeriodicalId":7046,"journal":{"name":"ACM SIGOPS Oper. Syst. Rev.","volume":"29 1","pages":"45-56"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGOPS Oper. Syst. Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3273982.3273987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ARM servers are becoming increasingly common, making server technologies such as virtualization for ARM of growing importance. We present the first study of ARM virtualization performance on server hardware, including multi-core measurements of two popular ARM and x86 hypervisors, KVM and Xen. We show how ARM hardware support for virtualization can enable much faster transitions between VMs and the hypervisor, a key hypervisor operation. However, current hypervisor designs, including both Type 1 hypervisors such as Xen and Type 2 hypervisors such as KVM, are not able to leverage this performance benefit for real application workloads on ARMv8.0. We discuss the reasons why and show that other factors related to hypervisor software design and implementation have a larger role in overall performance. Based on our measurements, we discuss software changes and new hardware features, the Virtualization Host Extensions (VHE), added in ARMv8.1 that bridge the gap and bring ARM's faster VM-to-hypervisor transition mechanism to modern Type 2 hypervisors running real applications.