Markovian jump linear systems-based filtering for visual and GPS aided inertial navigation system

R. Inoue, V. Guizilini, M. Terra, F. Ramos
{"title":"Markovian jump linear systems-based filtering for visual and GPS aided inertial navigation system","authors":"R. Inoue, V. Guizilini, M. Terra, F. Ramos","doi":"10.1109/IROS.2017.8206265","DOIUrl":null,"url":null,"abstract":"Visual-Inertial SLAM methods have become a very important technology for several applications in robotics. This kind of approach usually is composed by sensors as rate gyros, accelerometers and monocular cameras. Magnetometers and GPS modules generally used for outdoors are absent in the SLAM system observation, since the magnetometer measurements deteriorate in the presence of ferromagnetic materials and the GPS module signals are unavailable indoors or in urban environments. In order to make use of all these sensors, we propose Markovian jump linear systems (MJLS) to model the modes of operation of the navigation system based on available sensors and their reliability. An extended Kalman filter for MJLS fuses the sensor data and estimates the motion using the best mode of operation for each particular time instant. Experimental results are presented to show the effectiveness of the proposed method, in situations that would pose a challenge for standard data fusion techniques.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"26 1","pages":"4083-4089"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Visual-Inertial SLAM methods have become a very important technology for several applications in robotics. This kind of approach usually is composed by sensors as rate gyros, accelerometers and monocular cameras. Magnetometers and GPS modules generally used for outdoors are absent in the SLAM system observation, since the magnetometer measurements deteriorate in the presence of ferromagnetic materials and the GPS module signals are unavailable indoors or in urban environments. In order to make use of all these sensors, we propose Markovian jump linear systems (MJLS) to model the modes of operation of the navigation system based on available sensors and their reliability. An extended Kalman filter for MJLS fuses the sensor data and estimates the motion using the best mode of operation for each particular time instant. Experimental results are presented to show the effectiveness of the proposed method, in situations that would pose a challenge for standard data fusion techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于马尔可夫跳变线性系统的视觉和GPS辅助惯性导航滤波
视觉惯性SLAM方法已经成为机器人领域中非常重要的技术。这种方法通常由速率陀螺仪、加速度计和单目摄像机等传感器组成。在SLAM系统观测中没有通常用于户外的磁力计和GPS模块,因为磁力计的测量结果在铁磁性物质的存在下会变差,而GPS模块的信号在室内或城市环境中不可用。为了充分利用这些传感器,我们提出了基于可用传感器及其可靠性的马尔可夫跳变线性系统(MJLS)来建模导航系统的工作模式。MJLS的扩展卡尔曼滤波器融合传感器数据,并使用每个特定时刻的最佳操作模式估计运动。实验结果表明,在标准数据融合技术面临挑战的情况下,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct visual SLAM fusing proprioception for a humanoid robot Upper limb motion intent recognition using tactile sensing Soft fluidic rotary actuator with improved actuation properties Underwater 3D structures as semantic landmarks in SONAR mapping Adaptive perception: Learning from sensory predictions to extract object shape with a biomimetic fingertip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1