Robust text and drawing segmentation algorithm for historical documents

The Hip Pub Date : 2013-08-24 DOI:10.1145/2501115.2501117
Rafi Cohen, Abedelkadir Asi, K. Kedem, Jihad El-Sana, I. Dinstein
{"title":"Robust text and drawing segmentation algorithm for historical documents","authors":"Rafi Cohen, Abedelkadir Asi, K. Kedem, Jihad El-Sana, I. Dinstein","doi":"10.1145/2501115.2501117","DOIUrl":null,"url":null,"abstract":"We present a method to segment historical document images into regions of different content. First, we segment text elements from non-text elements using a binarized version of the document. Then, we refine the segmentation of the non-text regions into drawings, background and noise. At this stage, spatial and color features are exploited to guarantee coherent regions in the final segmentation. Experiments show that the suggested approach achieves better segmentation quality with respect to other methods. We examine the segmentation quality on 252 pages of a historical manuscript, for which the suggested method achieves about 92% and 90% segmentation accuracy of drawings and text elements, respectively.","PeriodicalId":77938,"journal":{"name":"The Hip","volume":"19 1","pages":"110-117"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Hip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501115.2501117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

We present a method to segment historical document images into regions of different content. First, we segment text elements from non-text elements using a binarized version of the document. Then, we refine the segmentation of the non-text regions into drawings, background and noise. At this stage, spatial and color features are exploited to guarantee coherent regions in the final segmentation. Experiments show that the suggested approach achieves better segmentation quality with respect to other methods. We examine the segmentation quality on 252 pages of a historical manuscript, for which the suggested method achieves about 92% and 90% segmentation accuracy of drawings and text elements, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
历史文献的鲁棒文本和绘图分割算法
提出了一种将历史文档图像分割成不同内容区域的方法。首先,我们使用文档的二进制版本从非文本元素中分割文本元素。然后,我们将非文本区域细分为图形、背景和噪声。在这个阶段,利用空间和颜色特征来保证最终分割的区域是一致的。实验表明,该方法相对于其他方法具有更好的分割质量。我们对252页历史手稿的分割质量进行了测试,所提出的方法对图片和文本元素的分割准确率分别达到92%和90%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contextual word spotting in historical manuscripts using Markov logic networks Robust text and drawing segmentation algorithm for historical documents Feature space denoising improves word spotting 3D reconstruction for damaged documents: imaging of the great parchment book Automatic photometric restoration of historical photographic negatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1