MIME: Minority Inclusion for Majority Group Enhancement of AI Performance

Pradyumna Chari, Yunhao Ba, Shreeram S. Athreya, A. Kadambi
{"title":"MIME: Minority Inclusion for Majority Group Enhancement of AI Performance","authors":"Pradyumna Chari, Yunhao Ba, Shreeram S. Athreya, A. Kadambi","doi":"10.48550/arXiv.2209.00746","DOIUrl":null,"url":null,"abstract":"Several papers have rightly included minority groups in artificial intelligence (AI) training data to improve test inference for minority groups and/or society-at-large. A society-at-large consists of both minority and majority stakeholders. A common misconception is that minority inclusion does not increase performance for majority groups alone. In this paper, we make the surprising finding that including minority samples can improve test error for the majority group. In other words, minority group inclusion leads to majority group enhancements (MIME) in performance. A theoretical existence proof of the MIME effect is presented and found to be consistent with experimental results on six different datasets. Project webpage: https://visual.ee.ucla.edu/mime.htm/","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.00746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Several papers have rightly included minority groups in artificial intelligence (AI) training data to improve test inference for minority groups and/or society-at-large. A society-at-large consists of both minority and majority stakeholders. A common misconception is that minority inclusion does not increase performance for majority groups alone. In this paper, we make the surprising finding that including minority samples can improve test error for the majority group. In other words, minority group inclusion leads to majority group enhancements (MIME) in performance. A theoretical existence proof of the MIME effect is presented and found to be consistent with experimental results on six different datasets. Project webpage: https://visual.ee.ucla.edu/mime.htm/
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIME:少数群体融入多数群体增强AI性能
一些论文正确地将少数群体纳入人工智能(AI)训练数据中,以改善少数群体和/或整个社会的测试推断。整个社会由少数利益相关者和多数利益相关者组成。一个常见的误解是,少数群体的加入并不会单独提高多数群体的表现。在本文中,我们得到了令人惊讶的发现,包括少数样本可以改善多数群体的测试误差。换句话说,包含少数组可以提高多数组的性能(MIME)。提出了MIME效应的理论存在性证明,并在六个不同的数据集上与实验结果相一致。项目网页:https://visual.ee.ucla.edu/mime.htm/
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual-Stream Knowledge-Preserving Hashing for Unsupervised Video Retrieval Spatial and Visual Perspective-Taking via View Rotation and Relation Reasoning for Embodied Reference Understanding Rethinking Confidence Calibration for Failure Prediction PCR-CG: Point Cloud Registration via Deep Explicit Color and Geometry Diverse Human Motion Prediction Guided by Multi-level Spatial-Temporal Anchors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1