首页 > 最新文献

Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision最新文献

英文 中文
Architecture-Agnostic Untrained Network Priors for Image Reconstruction with Frequency Regularization. 基于频率正则化的图像重构非训练网络先验算法。
Yilin Liu, Yunkui Pang, Jiang Li, Yong Chen, Pew-Thian Yap

Untrained networks inspired by deep image priors have shown promising capabilities in recovering high-quality images from noisy or partial measurements without requiring training sets. Their success is widely attributed to implicit regularization due to the spectral bias of suitable network architectures. However, the application of such network-based priors often entails superfluous architectural decisions, risks of overfitting, and lengthy optimization processes, all of which hinder their practicality. To address these challenges, we propose efficient architecture-agnostic techniques to directly modulate the spectral bias of network priors: 1) bandwidth-constrained input, 2) bandwidth-controllable upsamplers, and 3) Lipschitz-regularized convolutional layers. We show that, with just a few lines of code, we can reduce overfitting in underperforming architectures and close performance gaps with high-performing counterparts, minimizing the need for extensive architecture tuning. This makes it possible to employ a more compact model to achieve performance similar or superior to larger models while reducing runtime. Demonstrated on inpainting-like MRI reconstruction task, our results signify for the first time that architectural biases, overfitting, and runtime issues of untrained network priors can be simultaneously addressed without architectural modifications. Our code is publicly available .

受深度图像先验启发的未经训练的网络在不需要训练集的情况下从噪声或部分测量中恢复高质量图像方面显示出了很好的能力。他们的成功被广泛地归因于隐式正则化,由于合适的网络架构的频谱偏差。然而,这种基于网络的先验的应用通常会带来多余的架构决策、过度拟合的风险和冗长的优化过程,所有这些都阻碍了它们的实用性。为了解决这些挑战,我们提出了有效的架构不可知技术来直接调制网络先验的频谱偏差:1)带宽约束输入,2)带宽可控上采样器,以及3)lipschitz正则化卷积层。我们表明,只需几行代码,我们就可以减少性能不佳的体系结构中的过拟合,并缩小与高性能对应体系结构的性能差距,从而最大限度地减少对广泛体系结构调优的需求。这使得使用更紧凑的模型在减少运行时间的同时实现与大型模型相似或更好的性能成为可能。在类似于绘画的MRI重建任务中,我们的结果首次表明,未经训练的网络先验的架构偏差、过拟合和运行时问题可以在不修改架构的情况下同时解决。我们的代码是公开的。
{"title":"Architecture-Agnostic Untrained Network Priors for Image Reconstruction with Frequency Regularization.","authors":"Yilin Liu, Yunkui Pang, Jiang Li, Yong Chen, Pew-Thian Yap","doi":"10.1007/978-3-031-72630-9_20","DOIUrl":"10.1007/978-3-031-72630-9_20","url":null,"abstract":"<p><p>Untrained networks inspired by deep image priors have shown promising capabilities in recovering high-quality images from noisy or partial measurements <i>without requiring training sets</i>. Their success is widely attributed to implicit regularization due to the spectral bias of suitable network architectures. However, the application of such network-based priors often entails superfluous architectural decisions, risks of overfitting, and lengthy optimization processes, all of which hinder their practicality. To address these challenges, we propose efficient architecture-agnostic techniques to directly modulate the spectral bias of network priors: 1) bandwidth-constrained input, 2) bandwidth-controllable upsamplers, and 3) Lipschitz-regularized convolutional layers. We show that, with <i>just a few lines of code</i>, we can reduce overfitting in underperforming architectures and close performance gaps with high-performing counterparts, minimizing the need for extensive architecture tuning. This makes it possible to employ a more <i>compact</i> model to achieve performance similar or superior to larger models while reducing runtime. Demonstrated on inpainting-like MRI reconstruction task, our results signify for the first time that architectural biases, overfitting, and runtime issues of untrained network priors can be simultaneously addressed without architectural modifications. Our code is publicly available .</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"15072 ","pages":"341-358"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zero-Shot Adaptation for Approximate Posterior Sampling of Diffusion Models in Inverse Problems. 反问题中扩散模型近似后验抽样的零弹自适应。
Yaşar Utku Alçalar, Mehmet Akçakaya

Diffusion models have emerged as powerful generative techniques for solving inverse problems. Despite their success in a variety of inverse problems in imaging, these models require many steps to converge, leading to slow inference time. Recently, there has been a trend in diffusion models for employing sophisticated noise schedules that involve more frequent iterations of timesteps at lower noise levels, thereby improving image generation and convergence speed. However, application of these ideas for solving inverse problems with diffusion models remain challenging, as these noise schedules do not perform well when using empirical tuning for the forward model log-likelihood term weights. To tackle these challenges, we propose zero-shot approximate posterior sampling (ZAPS) that leverages connections to zero-shot physics-driven deep learning. ZAPS fixes the number of sampling steps, and uses zero-shot training with a physics-guided loss function to learn log-likelihood weights at each irregular timestep. We apply ZAPS to the recently proposed diffusion posterior sampling method as baseline, though ZAPS can also be used with other posterior sampling diffusion models. We further approximate the Hessian of the logarithm of the prior using a diagonalization approach with learnable diagonal entries for computational efficiency. These parameters are optimized over a fixed number of epochs with a given computational budget. Our results for various noisy inverse problems, including Gaussian and motion deblurring, inpainting, and super-resolution show that ZAPS reduces inference time, provides robustness to irregular noise schedules and improves reconstruction quality. Code is available at https://github.com/ualcalar17/ZAPS.

扩散模型已经成为求解逆问题的强大生成技术。尽管它们在成像中的各种逆问题中取得了成功,但这些模型需要许多步骤才能收敛,导致推理时间较慢。最近,在扩散模型中有一种趋势,即采用复杂的噪声时间表,在较低的噪声水平下更频繁地迭代时间步长,从而提高图像生成和收敛速度。然而,将这些思想应用于解决扩散模型的逆问题仍然具有挑战性,因为这些噪声调度在使用前向模型对数似然项权重的经验调整时表现不佳。为了解决这些挑战,我们提出了零射击近似后验抽样(ZAPS),它利用了零射击物理驱动的深度学习的连接。ZAPS固定采样步数,并使用带有物理引导损失函数的零射击训练来学习每个不规则时间步的对数似然权值。我们将ZAPS应用于最近提出的扩散后验抽样方法作为基线,尽管ZAPS也可以用于其他后验抽样扩散模型。为了提高计算效率,我们使用具有可学习对角项的对角化方法进一步近似先验对数的Hessian。这些参数在给定计算预算的固定数量的epoch上进行优化。我们对各种噪声逆问题的结果,包括高斯和运动去模糊,修复和超分辨率表明,ZAPS减少了推理时间,提供了对不规则噪声调度的鲁棒性,并提高了重建质量。代码可从https://github.com/ualcalar17/ZAPS获得。
{"title":"Zero-Shot Adaptation for Approximate Posterior Sampling of Diffusion Models in Inverse Problems.","authors":"Yaşar Utku Alçalar, Mehmet Akçakaya","doi":"10.1007/978-3-031-73010-8_26","DOIUrl":"https://doi.org/10.1007/978-3-031-73010-8_26","url":null,"abstract":"<p><p>Diffusion models have emerged as powerful generative techniques for solving inverse problems. Despite their success in a variety of inverse problems in imaging, these models require many steps to converge, leading to slow inference time. Recently, there has been a trend in diffusion models for employing sophisticated noise schedules that involve more frequent iterations of timesteps at lower noise levels, thereby improving image generation and convergence speed. However, application of these ideas for solving inverse problems with diffusion models remain challenging, as these noise schedules do not perform well when using empirical tuning for the forward model log-likelihood term weights. To tackle these challenges, we propose zero-shot approximate posterior sampling (ZAPS) that leverages connections to zero-shot physics-driven deep learning. ZAPS fixes the number of sampling steps, and uses zero-shot training with a physics-guided loss function to learn log-likelihood weights at each irregular timestep. We apply ZAPS to the recently proposed diffusion posterior sampling method as baseline, though ZAPS can also be used with other posterior sampling diffusion models. We further approximate the Hessian of the logarithm of the prior using a diagonalization approach with learnable diagonal entries for computational efficiency. These parameters are optimized over a fixed number of epochs with a given computational budget. Our results for various noisy inverse problems, including Gaussian and motion deblurring, inpainting, and super-resolution show that ZAPS reduces inference time, provides robustness to irregular noise schedules and improves reconstruction quality. Code is available at https://github.com/ualcalar17/ZAPS.</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"15141 ","pages":"444-460"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Stream Knowledge-Preserving Hashing for Unsupervised Video Retrieval 面向无监督视频检索的双流知识保持哈希算法
P. Li, Hongtao Xie, Jiannan Ge, Lei Zhang, Shaobo Min, Yongdong Zhang
{"title":"Dual-Stream Knowledge-Preserving Hashing for Unsupervised Video Retrieval","authors":"P. Li, Hongtao Xie, Jiannan Ge, Lei Zhang, Shaobo Min, Yongdong Zhang","doi":"10.1007/978-3-031-19781-9_11","DOIUrl":"https://doi.org/10.1007/978-3-031-19781-9_11","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"25 1","pages":"181-197"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79999317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Spatial and Visual Perspective-Taking via View Rotation and Relation Reasoning for Embodied Reference Understanding 通过视角旋转和关系推理的空间和视觉视角获取对具体化参考理解的影响
Cheng Shi, Sibei Yang
{"title":"Spatial and Visual Perspective-Taking via View Rotation and Relation Reasoning for Embodied Reference Understanding","authors":"Cheng Shi, Sibei Yang","doi":"10.1007/978-3-031-20059-5_12","DOIUrl":"https://doi.org/10.1007/978-3-031-20059-5_12","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"19 1","pages":"201-218"},"PeriodicalIF":0.0,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78452878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Rethinking Confidence Calibration for Failure Prediction 失效预测置信度校准的再思考
Fei Zhu, Zhen Cheng, Xu-Yao Zhang, Cheng-Lin Liu
{"title":"Rethinking Confidence Calibration for Failure Prediction","authors":"Fei Zhu, Zhen Cheng, Xu-Yao Zhang, Cheng-Lin Liu","doi":"10.1007/978-3-031-19806-9_30","DOIUrl":"https://doi.org/10.1007/978-3-031-19806-9_30","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"8 1","pages":"518-536"},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88433107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
PCR-CG: Point Cloud Registration via Deep Explicit Color and Geometry PCR-CG:点云配准通过深显色和几何
Yu Zhang, Junle Yu, Xiaolin Huang, Wenhui Zhou, Ji Hou
{"title":"PCR-CG: Point Cloud Registration via Deep Explicit Color and Geometry","authors":"Yu Zhang, Junle Yu, Xiaolin Huang, Wenhui Zhou, Ji Hou","doi":"10.1007/978-3-031-20080-9_26","DOIUrl":"https://doi.org/10.1007/978-3-031-20080-9_26","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"73 1","pages":"443-459"},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88805254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Diverse Human Motion Prediction Guided by Multi-level Spatial-Temporal Anchors 基于多层次时空锚点的多种人体运动预测
Sirui Xu, Yu-Xiong Wang, Liangyan Gui
{"title":"Diverse Human Motion Prediction Guided by Multi-level Spatial-Temporal Anchors","authors":"Sirui Xu, Yu-Xiong Wang, Liangyan Gui","doi":"10.1007/978-3-031-20047-2_15","DOIUrl":"https://doi.org/10.1007/978-3-031-20047-2_15","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"7 1","pages":"251-269"},"PeriodicalIF":0.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89325419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Bridging Images and Videos: A Simple Learning Framework for Large Vocabulary Video Object Detection 桥接图像和视频:一个用于大词汇视频对象检测的简单学习框架
Sanghyun Woo, KwanYong Park, Seoung Wug Oh, In-So Kweon, Joon-Young Lee
{"title":"Bridging Images and Videos: A Simple Learning Framework for Large Vocabulary Video Object Detection","authors":"Sanghyun Woo, KwanYong Park, Seoung Wug Oh, In-So Kweon, Joon-Young Lee","doi":"10.1007/978-3-031-19806-9_14","DOIUrl":"https://doi.org/10.1007/978-3-031-19806-9_14","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"46 1","pages":"238-258"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83742480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Union-Set Multi-source Model Adaptation for Semantic Segmentation 基于联合集的多源模型自适应语义分割
Zongyao Li, Ren Togo, Takahiro Ogawa, M. Haseyama
{"title":"Union-Set Multi-source Model Adaptation for Semantic Segmentation","authors":"Zongyao Li, Ren Togo, Takahiro Ogawa, M. Haseyama","doi":"10.1007/978-3-031-19818-2_33","DOIUrl":"https://doi.org/10.1007/978-3-031-19818-2_33","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"25 1","pages":"579-595"},"PeriodicalIF":0.0,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74570051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Interclass Prototype Relation for Few-Shot Segmentation 基于类间原型关系的少镜头分割
A. Okazawa
{"title":"Interclass Prototype Relation for Few-Shot Segmentation","authors":"A. Okazawa","doi":"10.1007/978-3-031-19818-2_21","DOIUrl":"https://doi.org/10.1007/978-3-031-19818-2_21","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"25 1","pages":"362-378"},"PeriodicalIF":0.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81399533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1