Aspect Category Classification dengan Pendekatan Machine Learning Menggunakan Dataset Bahasa Indonesia

Syaifulloh Amien Pandega Perdana, Teguh Bharata Aji, Ridi Ferdiana
{"title":"Aspect Category Classification dengan Pendekatan Machine Learning Menggunakan Dataset Bahasa Indonesia","authors":"Syaifulloh Amien Pandega Perdana, Teguh Bharata Aji, Ridi Ferdiana","doi":"10.22146/jnteti.v10i3.1819","DOIUrl":null,"url":null,"abstract":"Ulasan pelanggan merupakan opini terhadap kualitas barang atau jasa yang dirasakan konsumen. Ulasan pelanggan mengandung informasi yang berguna bagi konsumen maupun penyedia barang atau jasa. Ketersediaan ulasan pelanggan dalam jumlah besar pada website membutuhkan suatu framework untuk mengekstraksi sentimen secara otomatis. Sebuah ulasan pelanggan sering kali mengandung banyak aspek sehingga Aspect Based Sentiment Analysis (ABSA) harus digunakan untuk mengetahui polaritas masing-masing aspek. Salah satu tugas penting dalam ABSA adalah Aspect Category Detection. Metode machine learning untuk Aspect Category Detection sudah banyak dilakukan pada domain berbahasa Inggris, tetapi pada domain bahasa Indonesia masih sedikit. Makalah ini membandingkan kinerja tiga algoritme machine learning, yaitu Naïve Bayes (NB), Support Vector Machine (SVM), dan Random Forest (RF) pada ulasan pelanggan berbahasa Indonesia menggunakan Term Frequency–Inverse Document Frequency (TF-IDF) sebagai term weighting. Hasil menunjukkan bahwa RF memiliki kinerja paling unggul dibandingkan NB dan SVM pada tiga domain yang berbeda, yaitu restoran, hotel, dan e-commerce, dengan nilai f1-score untuk masing-masing domain adalah 84.3%, 85.7%, dan 89,3%.","PeriodicalId":31477,"journal":{"name":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jnteti.v10i3.1819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Ulasan pelanggan merupakan opini terhadap kualitas barang atau jasa yang dirasakan konsumen. Ulasan pelanggan mengandung informasi yang berguna bagi konsumen maupun penyedia barang atau jasa. Ketersediaan ulasan pelanggan dalam jumlah besar pada website membutuhkan suatu framework untuk mengekstraksi sentimen secara otomatis. Sebuah ulasan pelanggan sering kali mengandung banyak aspek sehingga Aspect Based Sentiment Analysis (ABSA) harus digunakan untuk mengetahui polaritas masing-masing aspek. Salah satu tugas penting dalam ABSA adalah Aspect Category Detection. Metode machine learning untuk Aspect Category Detection sudah banyak dilakukan pada domain berbahasa Inggris, tetapi pada domain bahasa Indonesia masih sedikit. Makalah ini membandingkan kinerja tiga algoritme machine learning, yaitu Naïve Bayes (NB), Support Vector Machine (SVM), dan Random Forest (RF) pada ulasan pelanggan berbahasa Indonesia menggunakan Term Frequency–Inverse Document Frequency (TF-IDF) sebagai term weighting. Hasil menunjukkan bahwa RF memiliki kinerja paling unggul dibandingkan NB dan SVM pada tiga domain yang berbeda, yaitu restoran, hotel, dan e-commerce, dengan nilai f1-score untuk masing-masing domain adalah 84.3%, 85.7%, dan 89,3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
方面类别分类dengan Pendekatan机器学习Menggunakan数据集印尼语
客户评论是消费者对产品或服务质量的一种看法。客户审查对消费者、商品或服务提供者都有有用的信息。网站上的大量客户审查要求自动提取情感。客户评论往往包含许多方面,以便使用剖析基于情感分析(ABSA)的极性。ABSA的一个关键任务是除法探测。面向导体探测的机器学习方法在英语域已经完成了很多,但在英语域仍然很少。这篇论文比较了印尼客户使用Term频率计算(TF-IDF)进行的三种算法学习的表现,即Naive Bayes (NB)、支持Vector machine (SVM)和Random Forest(射频)。结果表明,射频在三家不同的餐厅、酒店和e-commerce中表现最好,每一域的f1-score分别为84.3%、85.7%和89.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Citra Tekstur Terbaik Untuk Gaussian Naïve Bayes Dengan Interpolasi Nearest Neighbor Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection Implementation of QR Code Attendance Security System Using RSA and Hash Algorithms Fog Computing-Based System for Decentralized Smart Parking System by Using Firebase Pemantauan dan Pengendalian Parameter Greenhouse Berbasis IoT Dengan Protokol MQTT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1