{"title":"Three-Dimensional 3D Lithofacies Identification and Modeling Using 3D Seismic Attribute and Well Data Calibration","authors":"S. Roy, Kalyan Saikia","doi":"10.2118/194599-MS","DOIUrl":null,"url":null,"abstract":"\n Seismic attributes play an important role during reservoir characterization and three-dimensional (3D) lithofacies modeling by providing indirect insight of the subsurface. Using seismic attributes for such studies has always been challenging because it is difficult to determine a realistic relationship between hard data points (i.e., well information) and a 3D volume of seismic attributes. However, a probability-based approach for 3D seismic attribute calibration with well data provides better results of lithofacies modeling and spatial distribution of reservoir properties. This paper presents a probability-based seismic attribute calibration technique that has been described for 3D lithofacies modeling and distribution. This approach helps in subsurface reservoir characterization and provides a realistic lithofacies distribution model. This approach also helps reduce uncertainty of lithofacies prediction compared to conventional methods of simply using geostatistical algorithms.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"179 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, April 10, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194599-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Seismic attributes play an important role during reservoir characterization and three-dimensional (3D) lithofacies modeling by providing indirect insight of the subsurface. Using seismic attributes for such studies has always been challenging because it is difficult to determine a realistic relationship between hard data points (i.e., well information) and a 3D volume of seismic attributes. However, a probability-based approach for 3D seismic attribute calibration with well data provides better results of lithofacies modeling and spatial distribution of reservoir properties. This paper presents a probability-based seismic attribute calibration technique that has been described for 3D lithofacies modeling and distribution. This approach helps in subsurface reservoir characterization and provides a realistic lithofacies distribution model. This approach also helps reduce uncertainty of lithofacies prediction compared to conventional methods of simply using geostatistical algorithms.