Design of An Analog Circuit-Based Artificial Neural Network

Fikret Basar Gencer, Xhesila Xhafa, Benan Beril Inam, M. Berke Yelten
{"title":"Design of An Analog Circuit-Based Artificial Neural Network","authors":"Fikret Basar Gencer, Xhesila Xhafa, Benan Beril Inam, M. Berke Yelten","doi":"10.23919/ELECO47770.2019.8990559","DOIUrl":null,"url":null,"abstract":"In this paper, a feed-forward artificial neural network with a single hidden layer has been realized using analog circuit blocks designed in 90 nm UMC technology. The network is capable of solving non-linearly separable problems and successfully realizes the XOR gate, which is one of the most basic and common non-linear classification problems. The inputs and the weights of the network are represented by the amplitudes of the transient signals. The weights have been calculated through the back-propagation (BP) algorithm. The analog circuit-based learning implementation yields accurate results with the expected outputs.","PeriodicalId":6611,"journal":{"name":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"24 1","pages":"379-383"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELECO47770.2019.8990559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a feed-forward artificial neural network with a single hidden layer has been realized using analog circuit blocks designed in 90 nm UMC technology. The network is capable of solving non-linearly separable problems and successfully realizes the XOR gate, which is one of the most basic and common non-linear classification problems. The inputs and the weights of the network are represented by the amplitudes of the transient signals. The weights have been calculated through the back-propagation (BP) algorithm. The analog circuit-based learning implementation yields accurate results with the expected outputs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模拟电路的人工神经网络设计
本文利用90纳米UMC技术设计的模拟电路块,实现了一个具有单隐层的前馈人工神经网络。该网络具有解决非线性可分问题的能力,并成功实现了最基本、最常见的非线性分类问题之一的异或门问题。网络的输入和权值由暂态信号的幅值表示。通过反向传播(BP)算法计算权重。基于模拟电路的学习实现产生具有预期输出的准确结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Load Frequency Control of Two Area and Multi Source Power System Using Grey Wolf Optimization Algorithm Performance Analysis of Fault Current Limiting Methods on IEEE 9-Bus System Comparison of Magnetic Particle Incorporated PDMS Membrane Actuators Gene Selection using Intelligent Dynamic Genetic Algorithm and Random Forest RFID Based Indoors Test Setup for Visually Impaired
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1