{"title":"X-ray constrained wavefunctions based on Hirshfeld atoms. II. Reproducibility of electron densities in crystals of α-oxalic acid dihydrate.","authors":"Max L. Davidson, S. Grabowsky, D. Jayatilaka","doi":"10.1107/s2052520622004103","DOIUrl":null,"url":null,"abstract":"The Hirshfeld atom-based X-ray constrained wavefunction fitting (HA-XCW) procedure is tested for its reproducibility, and the information content of the fitted wavefunction is critically assessed. Fourteen different α-oxalic acid dihydrate data sets are used for this purpose, and the first joint fitting to 12 of these data sets is reported. There are systematic features in the electron density obtained from all data sets which agree with higher level benchmark calculations, but there are also many other strong systematic features which disagree with the reference calculations, most notably those associated with the electron density near the nuclei. To enhance reproducibility, three new protocols are described and tested to address the halting problem of XCW fitting, namely: an empirical power-function method, which is useful for estimating the accuracy of the structure factor uncertainties; an asymptotic extrapolation method based on ideas from density functional theory; and a `conservative method' whereby the smallest value of the regularization parameter is chosen from a series of data sets, or subsets.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"75 1","pages":"397-415"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/s2052520622004103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Hirshfeld atom-based X-ray constrained wavefunction fitting (HA-XCW) procedure is tested for its reproducibility, and the information content of the fitted wavefunction is critically assessed. Fourteen different α-oxalic acid dihydrate data sets are used for this purpose, and the first joint fitting to 12 of these data sets is reported. There are systematic features in the electron density obtained from all data sets which agree with higher level benchmark calculations, but there are also many other strong systematic features which disagree with the reference calculations, most notably those associated with the electron density near the nuclei. To enhance reproducibility, three new protocols are described and tested to address the halting problem of XCW fitting, namely: an empirical power-function method, which is useful for estimating the accuracy of the structure factor uncertainties; an asymptotic extrapolation method based on ideas from density functional theory; and a `conservative method' whereby the smallest value of the regularization parameter is chosen from a series of data sets, or subsets.