Automated retinal layer segmentation and characterization

Jonathan Luisi, D. Briley, Adam R. Boretsky, M. Motamedi
{"title":"Automated retinal layer segmentation and characterization","authors":"Jonathan Luisi, D. Briley, Adam R. Boretsky, M. Motamedi","doi":"10.1117/12.2057814","DOIUrl":null,"url":null,"abstract":"Spectral Domain Optical Coherence Tomography (SD-OCT) is a valuable diagnostic tool in both clinical and research settings. The depth-resolved intensity profiles generated by light backscattered from discrete layers of the retina provide a non-invasive method of investigating progressive diseases and injury within the eye. This study demonstrates the application of steerable convolution filters capable of automatically separating gradient orientations to identify edges and delineate tissue boundaries. The edge maps were recombined to measure thickness of individual retinal layers. This technique was successfully applied to longitudinally monitor changes in retinal morphology in a mouse model of laser-induced choroidal neovascularization (CNV) and human data from age-related macular degeneration patients. The steerable filters allow for direct segmentation of noisy images, while novel recombination of weaker segmentations allow for denoising post-segmentation. The segmentation before denoising strategy allows the rapid detection of thin retinal layers even under suboptimal imaging conditions.","PeriodicalId":75242,"journal":{"name":"Translational biophotonics","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2057814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral Domain Optical Coherence Tomography (SD-OCT) is a valuable diagnostic tool in both clinical and research settings. The depth-resolved intensity profiles generated by light backscattered from discrete layers of the retina provide a non-invasive method of investigating progressive diseases and injury within the eye. This study demonstrates the application of steerable convolution filters capable of automatically separating gradient orientations to identify edges and delineate tissue boundaries. The edge maps were recombined to measure thickness of individual retinal layers. This technique was successfully applied to longitudinally monitor changes in retinal morphology in a mouse model of laser-induced choroidal neovascularization (CNV) and human data from age-related macular degeneration patients. The steerable filters allow for direct segmentation of noisy images, while novel recombination of weaker segmentations allow for denoising post-segmentation. The segmentation before denoising strategy allows the rapid detection of thin retinal layers even under suboptimal imaging conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动视网膜层分割和表征
光谱域光学相干断层扫描(SD-OCT)在临床和研究中都是一种有价值的诊断工具。由视网膜离散层的光反向散射产生的深度分辨强度分布图提供了一种非侵入性的方法来调查眼睛内的进行性疾病和损伤。本研究演示了可操纵卷积滤波器的应用,该滤波器能够自动分离梯度方向,以识别边缘和描绘组织边界。边缘图被重新组合以测量单个视网膜层的厚度。该技术成功地应用于纵向监测激光诱导脉络膜新生(CNV)小鼠模型和年龄相关性黄斑变性患者视网膜形态学的变化。可操纵的滤波器允许直接分割噪声图像,而新的重组弱分割允许去噪后分割。在去噪策略之前的分割允许在次优成像条件下快速检测薄视网膜层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊最新文献
Optical Coherence Tomography Angiography in the Assessment of Vulvar Lichen Sclerosus Vascularity and Epithelial Thickness In Vivo. Deep Learning‐based High‐Dimensional Multiple Regression Estimator for Chest X‐ray Image Classification in Rapid Cardiomegaly Screening Ratiometric Analysis of In Vivo Optical Coherence Tomography Retinal Layer Thicknesses for Detection of Changes in Alzheimer's Disease Translation of photodynamic therapy and photodiagnostics into the clinic: Status and obstacles Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1