Federated Edge Intelligence and Edge Caching Mechanisms

Inf. Comput. Pub Date : 2023-07-18 DOI:10.3390/info14070414
Aristeidis Karras, Christos N. Karras, K. Giotopoulos, Dimitrios Tsolis, K. Oikonomou, S. Sioutas
{"title":"Federated Edge Intelligence and Edge Caching Mechanisms","authors":"Aristeidis Karras, Christos N. Karras, K. Giotopoulos, Dimitrios Tsolis, K. Oikonomou, S. Sioutas","doi":"10.3390/info14070414","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) has emerged as a promising technique for preserving user privacy and ensuring data security in distributed machine learning contexts, particularly in edge intelligence and edge caching applications. Recognizing the prevalent challenges of imbalanced and noisy data impacting scalability and resilience, our study introduces two innovative algorithms crafted for FL within a peer-to-peer framework. These algorithms aim to enhance performance, especially in decentralized and resource-limited settings. Furthermore, we propose a client-balancing Dirichlet sampling algorithm with probabilistic guarantees to mitigate oversampling issues, optimizing data distribution among clients to achieve more accurate and reliable model training. Within the specifics of our study, we employed 10, 20, and 40 Raspberry Pi devices as clients in a practical FL scenario, simulating real-world conditions. The well-known FedAvg algorithm was implemented, enabling multi-epoch client training before weight integration. Additionally, we examined the influence of real-world dataset noise, culminating in a performance analysis that underscores how our novel methods and research significantly advance robust and efficient FL techniques, thereby enhancing the overall effectiveness of decentralized machine learning applications, including edge intelligence and edge caching.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Federated learning (FL) has emerged as a promising technique for preserving user privacy and ensuring data security in distributed machine learning contexts, particularly in edge intelligence and edge caching applications. Recognizing the prevalent challenges of imbalanced and noisy data impacting scalability and resilience, our study introduces two innovative algorithms crafted for FL within a peer-to-peer framework. These algorithms aim to enhance performance, especially in decentralized and resource-limited settings. Furthermore, we propose a client-balancing Dirichlet sampling algorithm with probabilistic guarantees to mitigate oversampling issues, optimizing data distribution among clients to achieve more accurate and reliable model training. Within the specifics of our study, we employed 10, 20, and 40 Raspberry Pi devices as clients in a practical FL scenario, simulating real-world conditions. The well-known FedAvg algorithm was implemented, enabling multi-epoch client training before weight integration. Additionally, we examined the influence of real-world dataset noise, culminating in a performance analysis that underscores how our novel methods and research significantly advance robust and efficient FL techniques, thereby enhancing the overall effectiveness of decentralized machine learning applications, including edge intelligence and edge caching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联邦边缘智能和边缘缓存机制
联邦学习(FL)已经成为分布式机器学习环境中保护用户隐私和确保数据安全的一种有前途的技术,特别是在边缘智能和边缘缓存应用程序中。认识到影响可扩展性和弹性的不平衡和噪声数据的普遍挑战,我们的研究引入了在点对点框架内为FL精心设计的两种创新算法。这些算法旨在提高性能,特别是在分散和资源有限的情况下。此外,我们提出了一种具有概率保证的客户端平衡Dirichlet采样算法,以减轻过采样问题,优化客户端之间的数据分布,以实现更准确和可靠的模型训练。在我们的研究细节中,我们在一个实际的FL场景中使用了10、20和40个树莓派设备作为客户端,模拟现实世界的条件。实现了著名的fedag算法,在权值集成之前实现了多历元客户端训练。此外,我们研究了现实世界数据集噪声的影响,最后进行了性能分析,强调了我们的新方法和研究如何显著推进鲁棒和高效的FL技术,从而提高了分散机器学习应用程序的整体有效性,包括边缘智能和边缘缓存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1