Measurement point density and measurement methods in determining the geometric imperfections of shell surfaces

IF 0.3 Q4 REMOTE SENSING Reports on Geodesy and Geoinformatics Pub Date : 2018-06-01 DOI:10.2478/rgg-2018-0003
R. Kocierz, M. Rębisz, Ł. Ortyl
{"title":"Measurement point density and measurement methods in determining the geometric imperfections of shell surfaces","authors":"R. Kocierz, M. Rębisz, Ł. Ortyl","doi":"10.2478/rgg-2018-0003","DOIUrl":null,"url":null,"abstract":"Abstract In geodetic measurements of deformations in shell cooling towers, an important factor is to optimize the number of points representing the exterior surface of the shell. The conducted analyses of damage to such structures proved that cooling towers exhibited shell deformation consisting of irregular vertical waves (three concavities and two convexities), as well as seven horizontal waves. On this basis, it is claimed that, in accordance with the Shannon theorem, the correct representation of the generated waves requires the measurement of the cooling tower shell in a minimum of 12 vertical and 14 horizontal sections. Such density of the points may not be sufficient to represent local imperfections of the shell. The article presents the results of test measurements and their analysis, which were conducted to verify the assumptions as to the optimal number of measurement points for the shell of a cooling tower. The evaluation was based on a comparative analysis of the data obtained by the Terrestrial Laser Scanning (TLS) method, creating a very detailed model of geometric imperfections in an actual cooling tower with a height of 100 m. Based on the data obtained by the TLS method, point grids of various density were generated. An additional measurement of the cooling tower shell deformation was performed using a precise electronic total station with reflectorless measurement option. Therefore, it was possible to assess the accuracy of measurements by laser scanning in relation to measurements obtained by reflectorless total stations.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Geodesy and Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rgg-2018-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In geodetic measurements of deformations in shell cooling towers, an important factor is to optimize the number of points representing the exterior surface of the shell. The conducted analyses of damage to such structures proved that cooling towers exhibited shell deformation consisting of irregular vertical waves (three concavities and two convexities), as well as seven horizontal waves. On this basis, it is claimed that, in accordance with the Shannon theorem, the correct representation of the generated waves requires the measurement of the cooling tower shell in a minimum of 12 vertical and 14 horizontal sections. Such density of the points may not be sufficient to represent local imperfections of the shell. The article presents the results of test measurements and their analysis, which were conducted to verify the assumptions as to the optimal number of measurement points for the shell of a cooling tower. The evaluation was based on a comparative analysis of the data obtained by the Terrestrial Laser Scanning (TLS) method, creating a very detailed model of geometric imperfections in an actual cooling tower with a height of 100 m. Based on the data obtained by the TLS method, point grids of various density were generated. An additional measurement of the cooling tower shell deformation was performed using a precise electronic total station with reflectorless measurement option. Therefore, it was possible to assess the accuracy of measurements by laser scanning in relation to measurements obtained by reflectorless total stations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测定壳体表面几何缺陷的测点密度和测量方法
摘要在壳式冷却塔变形的大地测量中,一个重要的因素是优化代表壳外表面的点的数量。对这类结构的损伤分析表明,冷却塔的壳体变形由不规则的垂直波(3个凹形和2个凸形)和7个水平波组成。在此基础上,根据香农定理,所产生的波的正确表示需要在至少12个垂直段和14个水平段测量冷却塔外壳。这样的点密度可能不足以表示壳体的局部缺陷。本文介绍了为验证冷却塔壳体最佳测点数的假设而进行的试验测量结果及其分析。评估是基于对地面激光扫描(TLS)方法获得的数据的对比分析,在一个高度为100米的实际冷却塔中创建了一个非常详细的几何缺陷模型。基于TLS方法获得的数据,生成不同密度的点网格。使用具有无反射测量选项的精密电子全站仪对冷却塔外壳变形进行了额外测量。因此,有可能对激光扫描测量结果的准确性与无反射全站仪测量结果的准确性进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
28.60%
发文量
5
审稿时长
12 weeks
期刊最新文献
Geoprocessing of archival aerial photos and their scientific applications: A review Investigation of the accuracy of BeiDou, QZSS and QZSS/BeiDou satellites configuration for short, medium and long baselines in the Asia-Pacific regions Site-specific efficient management of soil resources using GIS and BIM technologies Accuracy of the application of mobile technologies for measurements made in headings of the Kłodawa Salt Mine Accuracy assessment of high and ultra high-resolution combined GGMs, and recent satellite-only GGMs – Case studies of Poland and Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1