Radical empiricism and machine learning research

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Causal Inference Pub Date : 2021-01-01 DOI:10.1515/jci-2021-0006
J. Pearl
{"title":"Radical empiricism and machine learning research","authors":"J. Pearl","doi":"10.1515/jci-2021-0006","DOIUrl":null,"url":null,"abstract":"Abstract I contrast the “data fitting” vs “data interpreting” approaches to data science along three dimensions: Expediency, Transparency, and Explainability. “Data fitting” is driven by the faith that the secret to rational decisions lies in the data itself. In contrast, the data-interpreting school views data, not as a sole source of knowledge but as an auxiliary means for interpreting reality, and “reality” stands for the processes that generate the data. I argue for restoring balance to data science through a task-dependent symbiosis of fitting and interpreting, guided by the Logic of Causation.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"47 1","pages":"78 - 82"},"PeriodicalIF":1.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2021-0006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 18

Abstract

Abstract I contrast the “data fitting” vs “data interpreting” approaches to data science along three dimensions: Expediency, Transparency, and Explainability. “Data fitting” is driven by the faith that the secret to rational decisions lies in the data itself. In contrast, the data-interpreting school views data, not as a sole source of knowledge but as an auxiliary means for interpreting reality, and “reality” stands for the processes that generate the data. I argue for restoring balance to data science through a task-dependent symbiosis of fitting and interpreting, guided by the Logic of Causation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激进经验主义和机器学习研究
我从三个方面对比了数据科学的“数据拟合”和“数据解释”方法:权宜之计、透明度和可解释性。“数据拟合”是由一种信念驱动的,即理性决策的秘密在于数据本身。相反,数据解释学派认为数据不是知识的唯一来源,而是解释现实的辅助手段,而“现实”代表生成数据的过程。我主张在因果逻辑的指导下,通过拟合和解释的任务依赖共生关系,恢复数据科学的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
期刊最新文献
Evaluating Boolean relationships in Configurational Comparative Methods Comparison of open-source software for producing directed acyclic graphs. LINGUISTIC FEATURES AND PRESENTATION OF MATERIALS ON ENGLISH TEXTBOOK “WHEN ENGLISH RINGS A BELL” BASED ON BSNP Heterogeneous interventional effects with multiple mediators: Semiparametric and nonparametric approaches Attributable fraction and related measures: Conceptual relations in the counterfactual framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1