Multi-Objective Optimization of an Axial Flow Turbine Design Using Surrogate Modeling and Genetic Algorithm

Aji M. Abraham, S. Anil Lal
{"title":"Multi-Objective Optimization of an Axial Flow Turbine Design Using Surrogate Modeling and Genetic Algorithm","authors":"Aji M. Abraham, S. Anil Lal","doi":"10.1115/1.4054429","DOIUrl":null,"url":null,"abstract":"\n A surrogate model-based multi-objective design optimization methodology using a nondominated sorting genetic algorithm is used to maximize the power output and efficiency of an axial flow turbine. A set of high-fidelity data obtained from ANSYS-CFD simulations on space-filling samples is used for developing a surrogate model. The methodology uses (i) a Latin hypercube experimental design for selecting space-filling samples, (ii) a genetic algorithm for determining parameters of a Kriging model, and (iii) axial gap, tip clearance, and rotation angle of nozzle profile of turbine as predictor variables. Flow in the turbine is characterized by the presence of jet and wake flow, shock in the rotor blade flow passage, and tip clearance vortex. Study shows that (i) the axial gap controls the mixing of the jet and the wake flows and provides proper blade incidence which reduces the shock strength in the rotor blade flow passages and (ii) an optimum sized tip clearance vortex controls tip clearance leakage. The optimization provided a set of Pareto-optimal solutions that are nondominated in terms of power and efficiency. Verification of a selected design configuration from the Pareto-optimal solution using computational fluid dynamics (CFD) analysis showed that the process of optimization has been able to fine-tune the axial gap and the tip clearance.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4054429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A surrogate model-based multi-objective design optimization methodology using a nondominated sorting genetic algorithm is used to maximize the power output and efficiency of an axial flow turbine. A set of high-fidelity data obtained from ANSYS-CFD simulations on space-filling samples is used for developing a surrogate model. The methodology uses (i) a Latin hypercube experimental design for selecting space-filling samples, (ii) a genetic algorithm for determining parameters of a Kriging model, and (iii) axial gap, tip clearance, and rotation angle of nozzle profile of turbine as predictor variables. Flow in the turbine is characterized by the presence of jet and wake flow, shock in the rotor blade flow passage, and tip clearance vortex. Study shows that (i) the axial gap controls the mixing of the jet and the wake flows and provides proper blade incidence which reduces the shock strength in the rotor blade flow passages and (ii) an optimum sized tip clearance vortex controls tip clearance leakage. The optimization provided a set of Pareto-optimal solutions that are nondominated in terms of power and efficiency. Verification of a selected design configuration from the Pareto-optimal solution using computational fluid dynamics (CFD) analysis showed that the process of optimization has been able to fine-tune the axial gap and the tip clearance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于代理建模和遗传算法的轴流涡轮多目标优化设计
采用非支配排序遗传算法,提出了一种基于代理模型的多目标优化设计方法,使轴流式涡轮的输出功率和效率最大化。利用ANSYS-CFD对充填试样进行模拟得到的一组高保真数据,建立了替代模型。该方法使用(i)拉丁超立方体实验设计来选择空间填充样本,(ii)遗传算法来确定克里格模型的参数,以及(iii)轴向间隙,尖端间隙和涡轮喷嘴轮廓的旋转角度作为预测变量。涡轮内部流动的特征是存在射流和尾流、动叶流道激波和叶尖间隙涡。研究表明:(1)轴向间隙控制了射流和尾流的混合,提供了适当的叶片入射角,从而降低了动叶流道内的激波强度;(2)最佳尺寸的叶尖间隙涡控制了叶尖间隙泄漏。该优化提供了一组在功率和效率方面不占主导地位的帕累托最优解。利用计算流体动力学(CFD)分析验证了帕累托最优解中选定的设计构型,结果表明,优化过程能够对轴向间隙和叶尖间隙进行微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1