A Probabilistic Framework for Color-Based Point Set Registration

Martin Danelljan, G. Meneghetti, F. Khan, M. Felsberg
{"title":"A Probabilistic Framework for Color-Based Point Set Registration","authors":"Martin Danelljan, G. Meneghetti, F. Khan, M. Felsberg","doi":"10.1109/CVPR.2016.201","DOIUrl":null,"url":null,"abstract":"In recent years, sensors capable of measuring both color and depth information have become increasingly popular. Despite the abundance of colored point set data, stateof-the-art probabilistic registration techniques ignore the available color information. In this paper, we propose a probabilistic point set registration framework that exploits available color information associated with the points. Our method is based on a model of the joint distribution of 3D-point observations and their color information. The proposed model captures discriminative color information, while being computationally efficient. We derive an EM algorithm for jointly estimating the model parameters and the relative transformations. Comprehensive experiments are performed on the Stanford Lounge dataset, captured by an RGB-D camera, and two point sets captured by a Lidar sensor. Our results demonstrate a significant gain in robustness and accuracy when incorporating color information. On the Stanford Lounge dataset, our approach achieves a relative reduction of the failure rate by 78% compared to the baseline. Furthermore, our proposed model outperforms standard strategies for combining color and 3D-point information, leading to state-of-the-art results.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"685 1","pages":"1818-1826"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

In recent years, sensors capable of measuring both color and depth information have become increasingly popular. Despite the abundance of colored point set data, stateof-the-art probabilistic registration techniques ignore the available color information. In this paper, we propose a probabilistic point set registration framework that exploits available color information associated with the points. Our method is based on a model of the joint distribution of 3D-point observations and their color information. The proposed model captures discriminative color information, while being computationally efficient. We derive an EM algorithm for jointly estimating the model parameters and the relative transformations. Comprehensive experiments are performed on the Stanford Lounge dataset, captured by an RGB-D camera, and two point sets captured by a Lidar sensor. Our results demonstrate a significant gain in robustness and accuracy when incorporating color information. On the Stanford Lounge dataset, our approach achieves a relative reduction of the failure rate by 78% compared to the baseline. Furthermore, our proposed model outperforms standard strategies for combining color and 3D-point information, leading to state-of-the-art results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于颜色的点集配准的概率框架
近年来,能够测量颜色和深度信息的传感器变得越来越流行。尽管有丰富的彩色点集数据,最先进的概率配准技术忽略了可用的颜色信息。在本文中,我们提出了一种利用与点相关的可用颜色信息的概率点集配准框架。我们的方法是基于三维点观测及其颜色信息的联合分布模型。该模型在计算效率高的同时,还能捕获有区别的颜色信息。我们推导了一种联合估计模型参数和相关变换的电磁算法。在RGB-D相机捕获的Stanford Lounge数据集和激光雷达传感器捕获的两个点集上进行了综合实验。我们的结果表明,当结合颜色信息时,鲁棒性和准确性显著提高。在斯坦福休息室数据集上,与基线相比,我们的方法将故障率相对降低了78%。此外,我们提出的模型优于结合颜色和3d点信息的标准策略,从而获得最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1