Influence of Climate Change on Probability of Carbonation-Induced Corrosion Initiation

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Periodica Polytechnica-Civil Engineering Pub Date : 2023-08-23 DOI:10.3311/ppci.22101
Mostafa Hassan, L. Amleh
{"title":"Influence of Climate Change on Probability of Carbonation-Induced Corrosion Initiation","authors":"Mostafa Hassan, L. Amleh","doi":"10.3311/ppci.22101","DOIUrl":null,"url":null,"abstract":"The consequences of climate change on infrastructure, particularly reinforced concrete (RC) bridges, have rapidly increased in recent years. These consequences are primarily driven by the surge in CO2 emissions, which significantly impacts the carbonation depth of RC structures. This study aims to investigate the probability of carbonation-induced corrosion initiation (PCICI) in RC bridge elements. To achieve this, the investigation incorporates a range of concrete covers, varying from 30 to 50 mm, and considers different concrete mixes with cement contents of 400, 350, and 250 kg/m3. The investigation utilizes the Monte-Carlo simulation method, considering different representative concentration pathways (RCPs) to account for two emission scenarios: RCP2.6 (low emission scenario) and RCP8.5 (high emission scenario). By analyzing projected CO2 concentrations and maximum temperature, the study provides insights into the potential corrosion initiation risks in RC bridges. The findings indicated a significant 66.3% increase in PCICI for a cement content of 250 kg/m3, compared to 400 kg/m3, under the RCP8.5 scenario, specifically when using a concrete cover of 30 mm by 2100. The study also revealed that the PCICI approached an approximate value of zero when concrete covers were set at 45 and 50 mm regardless of the variations in cement contents and the duration considered, for both the RCP2.6 and RCP8.5 scenarios.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The consequences of climate change on infrastructure, particularly reinforced concrete (RC) bridges, have rapidly increased in recent years. These consequences are primarily driven by the surge in CO2 emissions, which significantly impacts the carbonation depth of RC structures. This study aims to investigate the probability of carbonation-induced corrosion initiation (PCICI) in RC bridge elements. To achieve this, the investigation incorporates a range of concrete covers, varying from 30 to 50 mm, and considers different concrete mixes with cement contents of 400, 350, and 250 kg/m3. The investigation utilizes the Monte-Carlo simulation method, considering different representative concentration pathways (RCPs) to account for two emission scenarios: RCP2.6 (low emission scenario) and RCP8.5 (high emission scenario). By analyzing projected CO2 concentrations and maximum temperature, the study provides insights into the potential corrosion initiation risks in RC bridges. The findings indicated a significant 66.3% increase in PCICI for a cement content of 250 kg/m3, compared to 400 kg/m3, under the RCP8.5 scenario, specifically when using a concrete cover of 30 mm by 2100. The study also revealed that the PCICI approached an approximate value of zero when concrete covers were set at 45 and 50 mm regardless of the variations in cement contents and the duration considered, for both the RCP2.6 and RCP8.5 scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化对碳致腐蚀起始概率的影响
近年来,气候变化对基础设施,特别是钢筋混凝土(RC)桥梁的影响迅速增加。这些后果主要是由二氧化碳排放的激增所驱动的,这显著影响了RC结构的碳化深度。本研究旨在探讨RC桥梁构件碳化诱发腐蚀的可能性。为了实现这一目标,该研究采用了一系列从30到50毫米不等的混凝土覆盖层,并考虑了水泥含量为400、350和250 kg/m3的不同混凝土混合物。本研究采用蒙特卡罗模拟方法,考虑不同的代表性浓度路径(rcp),分别考虑RCP2.6(低排放情景)和RCP8.5(高排放情景)两种排放情景。通过分析预计的二氧化碳浓度和最高温度,该研究为RC桥梁的潜在腐蚀引发风险提供了见解。研究结果表明,与RCP8.5情景下的400 kg/m3相比,当水泥含量为250 kg/m3时,PCICI显著增加了66.3%,特别是当到2100年使用30 mm的混凝土覆盖层时。研究还表明,在RCP2.6和RCP8.5两种情况下,无论水泥含量和持续时间的变化如何,当混凝土覆盖层设置为45和50 mm时,PCICI都接近于接近零的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Periodica Polytechnica-Civil Engineering
Periodica Polytechnica-Civil Engineering 工程技术-工程:土木
CiteScore
3.40
自引率
16.70%
发文量
89
审稿时长
12 months
期刊介绍: Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly. Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering. The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.
期刊最新文献
Investigation of the Feasibility of Increasing the Tail-grouting Zone during Mechanized Tunneling in Sandy Soils A New Optimal Sensor Location Method for Double-curvature Arch Dams: A Comparison with the Modal Assurance Criterion (MAC) Experimental Study on Direct Shear Strength of Fiber Reinforced Self Compacting Concrete under Acid and Sulfate Attack Numerical Investigation of Cyclic Behavior of Angled U-shaped Yielding Damper on Steel Frames Overview of the Empirical Relations between Different Aggregate Degradation Values and Rock Strength Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1