Table understanding approaches for extracting knowledge from heterogeneous tables

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery Pub Date : 2021-03-28 DOI:10.1002/widm.1407
Sara Bonfitto, E. Casiraghi, M. Mesiti
{"title":"Table understanding approaches for extracting knowledge from heterogeneous tables","authors":"Sara Bonfitto, E. Casiraghi, M. Mesiti","doi":"10.1002/widm.1407","DOIUrl":null,"url":null,"abstract":"Table understanding methods extract, transform, and interpret the information contained in tabular data embedded in documents/files of different formats. Such automatic understanding would allow to exploit tabular information with the aim of accurately answering queries, or integrating heterogeneous repositories of information in a common knowledge base, or exchanging information among different sources. The purpose of this survey is to provide a comprehensive analysis of the research efforts so far devoted to the problem of table understanding and to describe systems that support the transformation of heterogeneous tables into meaningful information.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"686 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1407","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 16

Abstract

Table understanding methods extract, transform, and interpret the information contained in tabular data embedded in documents/files of different formats. Such automatic understanding would allow to exploit tabular information with the aim of accurately answering queries, or integrating heterogeneous repositories of information in a common knowledge base, or exchanging information among different sources. The purpose of this survey is to provide a comprehensive analysis of the research efforts so far devoted to the problem of table understanding and to describe systems that support the transformation of heterogeneous tables into meaningful information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从异构表中提取知识的表理解方法
表理解方法提取、转换和解释嵌入在不同格式的文档/文件中的表格数据中包含的信息。这种自动理解将允许利用表格信息,以准确地回答查询,或在公共知识库中集成异构信息库,或在不同来源之间交换信息。本调查的目的是对迄今为止致力于表理解问题的研究工作进行全面分析,并描述支持将异构表转换为有意义信息的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
期刊最新文献
Research on mining software repositories to facilitate refactoring Use of artificial intelligence algorithms to predict systemic diseases from retinal images The benefits and dangers of using machine learning to support making legal predictions Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective ExplainFix: Explainable spatially fixed deep networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1