Indrajeet Ghosh, Sreenivasan Ramasamy Ramamurthy, Avijoy Chakma, Nirmalya Roy
{"title":"Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective","authors":"Indrajeet Ghosh, Sreenivasan Ramasamy Ramamurthy, Avijoy Chakma, Nirmalya Roy","doi":"10.1002/widm.1496","DOIUrl":null,"url":null,"abstract":"The rapid and impromptu interest in the coupling of machine learning (ML) algorithms with wearable and contactless sensors aimed at tackling real‐world problems warrants a pedagogical study to understand all the aspects of this research direction. Considering this aspect, this survey aims to review the state‐of‐the‐art literature on ML algorithms, methodologies, and hypotheses adopted to solve the research problems and challenges in the domain of sports. First, we categorize this study into three main research fields: sensors, computer vision, and wireless and mobile‐based applications. Then, for each of these fields, we thoroughly analyze the systems that are deployable for real‐time sports analytics. Next, we meticulously discuss the learning algorithms (e.g., statistical learning, deep learning, reinforcement learning) that power those deployable systems while also comparing and contrasting the benefits of those learning methodologies. Finally, we highlight the possible future open‐research opportunities and emerging technologies that could contribute to the domain of sports analytics.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"1 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1496","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
The rapid and impromptu interest in the coupling of machine learning (ML) algorithms with wearable and contactless sensors aimed at tackling real‐world problems warrants a pedagogical study to understand all the aspects of this research direction. Considering this aspect, this survey aims to review the state‐of‐the‐art literature on ML algorithms, methodologies, and hypotheses adopted to solve the research problems and challenges in the domain of sports. First, we categorize this study into three main research fields: sensors, computer vision, and wireless and mobile‐based applications. Then, for each of these fields, we thoroughly analyze the systems that are deployable for real‐time sports analytics. Next, we meticulously discuss the learning algorithms (e.g., statistical learning, deep learning, reinforcement learning) that power those deployable systems while also comparing and contrasting the benefits of those learning methodologies. Finally, we highlight the possible future open‐research opportunities and emerging technologies that could contribute to the domain of sports analytics.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.