{"title":"Graph logics with rational relations: the role of word combinatorics","authors":"P. Barceló, Pablo Muñoz","doi":"10.1145/2603088.2603122","DOIUrl":null,"url":null,"abstract":"Graph databases make use of logics that combine traditional first-order features with navigation on paths, in the same way logics for model checking do. However, modern applications of graph databases impose a new requirement on the expressiveness of the logics: they need comparing labels of paths based on word relations (such as prefix, subword, or subsequence). This has led to the study of logics that extend basic graph languages with features for comparing labels of paths based on regular relations, or the strictly more powerful rational relations. The evaluation problem for the former logic is decidable (and even tractable in data complexity), but already extending this logic with such a common rational relation as subword or suffix turns evaluation undecidable. In practice, however, it is rare to have the need for such powerful logics. Therefore, it is more realistic to study the complexity of less expressive logics that still allow comparing paths based on practically motivated rational relations. Here we concentrate on the most basic such languages, which extend graph pattern logics with path comparisons based only on suffix, subword or subsequence. We pinpoint the complexity of evaluation for each one of these logics, which shows that all of them are decidable in elementary time (PSpace or NExpTime). Furthermore, the extension with suffix is even tractable in data complexity (but the other two are not). In order to obtain our results we establish a link between the evaluation problem for graph logics and two important problems in word combinatorics: word equations with regular constraints and square shuffling.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Graph databases make use of logics that combine traditional first-order features with navigation on paths, in the same way logics for model checking do. However, modern applications of graph databases impose a new requirement on the expressiveness of the logics: they need comparing labels of paths based on word relations (such as prefix, subword, or subsequence). This has led to the study of logics that extend basic graph languages with features for comparing labels of paths based on regular relations, or the strictly more powerful rational relations. The evaluation problem for the former logic is decidable (and even tractable in data complexity), but already extending this logic with such a common rational relation as subword or suffix turns evaluation undecidable. In practice, however, it is rare to have the need for such powerful logics. Therefore, it is more realistic to study the complexity of less expressive logics that still allow comparing paths based on practically motivated rational relations. Here we concentrate on the most basic such languages, which extend graph pattern logics with path comparisons based only on suffix, subword or subsequence. We pinpoint the complexity of evaluation for each one of these logics, which shows that all of them are decidable in elementary time (PSpace or NExpTime). Furthermore, the extension with suffix is even tractable in data complexity (but the other two are not). In order to obtain our results we establish a link between the evaluation problem for graph logics and two important problems in word combinatorics: word equations with regular constraints and square shuffling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有有理关系的图逻辑:词组合学的作用
图数据库使用的逻辑将传统的一阶特征与路径上的导航结合起来,与模型检查的逻辑一样。然而,图形数据库的现代应用对逻辑的表达性提出了新的要求:它们需要基于单词关系(如前缀、子词或子序列)比较路径的标签。这导致了逻辑学的研究,它扩展了基本的图形语言,具有基于规则关系或严格更强大的理性关系比较路径标签的特征。前一种逻辑的求值问题是可确定的(甚至在数据复杂性方面是可处理的),但是已经用子词或后缀等常见的理性关系扩展了这种逻辑,使得求值变得不可确定。然而,在实践中,很少需要如此强大的逻辑。因此,研究仍然允许基于实际动机的理性关系比较路径的表达性较差的逻辑的复杂性更为现实。在这里,我们专注于最基本的这种语言,它们扩展图形模式逻辑,仅基于后缀、子词或子序列进行路径比较。我们指出了每个逻辑的求值复杂性,这表明它们在基本时间(PSpace或NExpTime)上都是可决定的。此外,带后缀的扩展在数据复杂性方面甚至是可处理的(但其他两个则不然)。为了得到我们的结果,我们在图逻辑的评价问题与词组合中的两个重要问题:正则约束词方程和平方洗牌之间建立了联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Ackermann award 2014 KAT + B! Logic for communicating automata with parameterized topology Eilenberg-MacLane spaces in homotopy type theory Deadlock and lock freedom in the linear π-calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1