Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)最新文献
Frederik Harwath, Lucas Heimberg, Nicole Schweikardt
We provide elementary algorithms for two preservation theorems for first-order sentences with modulo m counting quantifiers (FO+MODm) on the class Cd of all finite structures of degree at most d: For each FO+MODm-sentence that is preserved under extensions (homomorphisms) on Cd, a Cd-equivalent existential (existential-positive) FO-sentence can be constructed in 6-fold (4-fold) exponential time. For FO-sentences, the algorithm has 5-fold (4-fold) exponential time complexity. This is complemented by lower bounds showing that for FO-sentences a 3-fold exponential blow-up of the computed existential (existential-positive) sentence is unavoidable. Furthermore, we show that for an input FO-formula, a Cd-equivalent Feferman-Vaught decomposition can be computed in 3-fold exponential time. We also provide a matching lower bound.
{"title":"Preservation and decomposition theorems for bounded degree structures","authors":"Frederik Harwath, Lucas Heimberg, Nicole Schweikardt","doi":"10.1145/2603088.2603130","DOIUrl":"https://doi.org/10.1145/2603088.2603130","url":null,"abstract":"We provide elementary algorithms for two preservation theorems for first-order sentences with modulo m counting quantifiers (FO+MODm) on the class Cd of all finite structures of degree at most d: For each FO+MODm-sentence that is preserved under extensions (homomorphisms) on Cd, a Cd-equivalent existential (existential-positive) FO-sentence can be constructed in 6-fold (4-fold) exponential time. For FO-sentences, the algorithm has 5-fold (4-fold) exponential time complexity. This is complemented by lower bounds showing that for FO-sentences a 3-fold exponential blow-up of the computed existential (existential-positive) sentence is unavoidable. Furthermore, we show that for an input FO-formula, a Cd-equivalent Feferman-Vaught decomposition can be computed in 3-fold exponential time. We also provide a matching lower bound.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76615608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present the first method for reasoning about temporal logic properties of higher-order, infinite-data programs. By distinguishing between the finite traces and infinite traces in the specification, we obtain rules that permit us to reason about the temporal behavior of program parts via a type-and-effect system, which is then able to compose these facts together to prove the overall target property of the program. The type system alone is strong enough to derive many temporal safety properties using refinement types and temporal effects. We also show how existing techniques can be used as oracles to provide liveness information (e.g. termination) about program parts and that the type-and-effect system can combine this information with temporal safety information to derive nontrivial temporal properties. Our work has application toward verification of higher-order software, as well as modular strategies for procedural programs.
{"title":"Local temporal reasoning","authors":"Eric Koskinen, Tachio Terauchi","doi":"10.1145/2603088.2603138","DOIUrl":"https://doi.org/10.1145/2603088.2603138","url":null,"abstract":"We present the first method for reasoning about temporal logic properties of higher-order, infinite-data programs. By distinguishing between the finite traces and infinite traces in the specification, we obtain rules that permit us to reason about the temporal behavior of program parts via a type-and-effect system, which is then able to compose these facts together to prove the overall target property of the program. The type system alone is strong enough to derive many temporal safety properties using refinement types and temporal effects. We also show how existing techniques can be used as oracles to provide liveness information (e.g. termination) about program parts and that the type-and-effect system can combine this information with temporal safety information to derive nontrivial temporal properties. Our work has application toward verification of higher-order software, as well as modular strategies for procedural programs.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77245186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Probabilistic model checking (PMC) is a well-established and powerful method for the automated quantitative analysis of parallel distributed systems. Classical PMC-approaches focus on computing probabilities and expectations in Markovian models annotated with numerical values for costs and utility, such as energy and performance. Usually, the utility gained and the costs invested are dependent and a trade-off analysis is of utter interest. In this paper, we provide an overview on various kinds of non-standard multi-objective formalisms that enable to specify and reason about the trade-off between costs and utility. In particular, we present the concepts of quantiles, conditional probabilities and expectations as well as objectives on the ratio between accumulated costs and utility. Such multi-objective properties have drawn very few attention in the context of PMC and hence, there is hardly any tool support in state-of-the-art model checkers. Furthermore, we broaden our results towards combined quantile queries, computing conditional probabilities those conditions are expressed as formulas in probabilistic computation tree logic, and the computation of ratios which can be expected on the long-run.
{"title":"Trade-off analysis meets probabilistic model checking","authors":"C. Baier, Clemens Dubslaff, Sascha Klüppelholz","doi":"10.1145/2603088.2603089","DOIUrl":"https://doi.org/10.1145/2603088.2603089","url":null,"abstract":"Probabilistic model checking (PMC) is a well-established and powerful method for the automated quantitative analysis of parallel distributed systems. Classical PMC-approaches focus on computing probabilities and expectations in Markovian models annotated with numerical values for costs and utility, such as energy and performance. Usually, the utility gained and the costs invested are dependent and a trade-off analysis is of utter interest. In this paper, we provide an overview on various kinds of non-standard multi-objective formalisms that enable to specify and reason about the trade-off between costs and utility. In particular, we present the concepts of quantiles, conditional probabilities and expectations as well as objectives on the ratio between accumulated costs and utility. Such multi-objective properties have drawn very few attention in the context of PMC and hence, there is hardly any tool support in state-of-the-art model checkers. Furthermore, we broaden our results towards combined quantile queries, computing conditional probabilities those conditions are expressed as formulas in probabilistic computation tree logic, and the computation of ratios which can be expected on the long-run.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78012096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We describe the construction of an abstract lattice from a given Buchi automata. The abstract lattice is finite and has the following key properties. (i) There is a Galois connection between it and the (infinite) lattice of languages of finite and infinite words over a given alphabet. (ii) The abstraction is faithful with respect to acceptance by the automaton. (iii) Least fixpoints and ω-iterations (but not in general greatest fixpoints) can be computed on the level of the abstract lattice. This allows one to develop an abstract interpretation capable of checking whether finite and infinite traces of a (recursive) program are accepted by a policy automaton. It is also possible to cast this analysis in form of a type and effect system with the effects being elements of the abstract lattice. While the resulting decidability and complexity results are known (regular model checking for pushdown systems) the abstract lattice provides a new point of view and enables smooth integration with data types, objects, higher-order functions which are best handled with abstract interpretation or type systems. We demonstrate this by generalising our type-and-effect systems to object-oriented programs and higher-order functions.
{"title":"Abstract interpretation from Büchi automata","authors":"M. Hofmann, Wei Chen","doi":"10.1145/2603088.2603127","DOIUrl":"https://doi.org/10.1145/2603088.2603127","url":null,"abstract":"We describe the construction of an abstract lattice from a given Buchi automata. The abstract lattice is finite and has the following key properties. (i) There is a Galois connection between it and the (infinite) lattice of languages of finite and infinite words over a given alphabet. (ii) The abstraction is faithful with respect to acceptance by the automaton. (iii) Least fixpoints and ω-iterations (but not in general greatest fixpoints) can be computed on the level of the abstract lattice. This allows one to develop an abstract interpretation capable of checking whether finite and infinite traces of a (recursive) program are accepted by a policy automaton. It is also possible to cast this analysis in form of a type and effect system with the effects being elements of the abstract lattice. While the resulting decidability and complexity results are known (regular model checking for pushdown systems) the abstract lattice provides a new point of view and enables smooth integration with data types, objects, higher-order functions which are best handled with abstract interpretation or type systems. We demonstrate this by generalising our type-and-effect systems to object-oriented programs and higher-order functions.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86629324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Odd Order Theorem is a landmark result in finite group theory, due to W. Feit and J. G. Thompson [1], which states that every finite group of odd order is solvable. It is famous for its crucial role in the classification of finite simple groups, for the novel methods introduced by its original proof but also for the striking contrast between the simplicity of its statement and the unusual length and complexity of its proof. After a six year collaborative effort, we managed to formalize and machine-check a complete proof of this theorem [2] using the Coq proof assistant [3]. The resulting collection of libraries of formalized mathematics covers a wide variety of topics, mostly in algebra, as this proof relies on a sophisticated combination of local analysis and character theory. In this tutorial we comment on the role played by the different features of the proof assistant, from the meta-theory of its underlying logic to the implementation of its various components. We will also discuss some issues raised by the translation of mathematical textbooks into formal libraries and the perspectives it opens on the use of a computer to do mathematics.
奇阶定理是有限群论中具有里程碑意义的结果,由W. Feit和J. G. Thompson[1]提出,它指出了每一个奇阶有限群都是可解的。它的著名之处在于它在有限简单群的分类中所起的关键作用,在于它最初的证明所引入的新方法,而且还在于它的陈述的简单性与它的证明的不同寻常的长度和复杂性之间的鲜明对比。经过六年的合作努力,我们成功地使用Coq证明助手[3]形式化并机器检查了该定理的完整证明[2]。由此产生的形式化数学库集合涵盖了各种各样的主题,主要是代数,因为这种证明依赖于局部分析和特征理论的复杂组合。在本教程中,我们将评论证明助手的不同特性所扮演的角色,从其底层逻辑的元理论到其各种组件的实现。我们还将讨论将数学教科书翻译成正式的图书馆所引起的一些问题,以及它对使用计算机做数学打开的前景。
{"title":"Computer-checked mathematics: a formal proof of the odd order theorem","authors":"A. Mahboubi","doi":"10.1145/2603088.2603090","DOIUrl":"https://doi.org/10.1145/2603088.2603090","url":null,"abstract":"The Odd Order Theorem is a landmark result in finite group theory, due to W. Feit and J. G. Thompson [1], which states that every finite group of odd order is solvable. It is famous for its crucial role in the classification of finite simple groups, for the novel methods introduced by its original proof but also for the striking contrast between the simplicity of its statement and the unusual length and complexity of its proof. After a six year collaborative effort, we managed to formalize and machine-check a complete proof of this theorem [2] using the Coq proof assistant [3]. The resulting collection of libraries of formalized mathematics covers a wide variety of topics, mostly in algebra, as this proof relies on a sophisticated combination of local analysis and character theory. In this tutorial we comment on the role played by the different features of the proof assistant, from the meta-theory of its underlying logic to the implementation of its various components. We will also discuss some issues raised by the translation of mathematical textbooks into formal libraries and the perspectives it opens on the use of a computer to do mathematics.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84809046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applications increasingly derive functionality from sensitive personal information, forcing developers who wish to preserve some notion of privacy or confidentiality to reason about partial information leakage. New definitions of privacy and confidentiality, such as differential privacy, address this by offering precise statements of acceptable disclosure that are useful in common settings. However, several recent published accounts of flawed implementations have surfaced, highlighting the need for verification techniques. In this paper, we pose the problem of model-counting satisfiability, and show that a diverse set of privacy and confidentiality verification problems can be reduced to instances of it. In this problem, constraints are placed on the outcome of model-counting operations, which occur over formulas containing parameters. The object is to find an assignment to the parameters that satisfies the model-counting constraints, or to demonstrate unsatisfiability. We present a logic for expressing these problems, and an abstract decision procedure for model-counting satisfiability problems fashioned after CDCL-based SMT procedures, encapsulating functionality specific to the underlying logic in which counting occurs in a small set of black-box routines similar to those required of theory solvers in SMT. We describe an implementation of this procedure for linear-integer arithmetic, as well as an effective strategy for generating lemmas. We conclude by applying our decision procedure to the verification of privacy properties over programs taken from a well-known privacy-preserving compiler, demonstrating its ability to find flaws or prove correctness sometimes in a matter of seconds.
{"title":"Satisfiability modulo counting: a new approach for analyzing privacy properties","authors":"Matt Fredrikson, S. Jha","doi":"10.1145/2603088.2603097","DOIUrl":"https://doi.org/10.1145/2603088.2603097","url":null,"abstract":"Applications increasingly derive functionality from sensitive personal information, forcing developers who wish to preserve some notion of privacy or confidentiality to reason about partial information leakage. New definitions of privacy and confidentiality, such as differential privacy, address this by offering precise statements of acceptable disclosure that are useful in common settings. However, several recent published accounts of flawed implementations have surfaced, highlighting the need for verification techniques. In this paper, we pose the problem of model-counting satisfiability, and show that a diverse set of privacy and confidentiality verification problems can be reduced to instances of it. In this problem, constraints are placed on the outcome of model-counting operations, which occur over formulas containing parameters. The object is to find an assignment to the parameters that satisfies the model-counting constraints, or to demonstrate unsatisfiability. We present a logic for expressing these problems, and an abstract decision procedure for model-counting satisfiability problems fashioned after CDCL-based SMT procedures, encapsulating functionality specific to the underlying logic in which counting occurs in a small set of black-box routines similar to those required of theory solvers in SMT. We describe an implementation of this procedure for linear-integer arithmetic, as well as an effective strategy for generating lemmas. We conclude by applying our decision procedure to the verification of privacy properties over programs taken from a well-known privacy-preserving compiler, demonstrating its ability to find flaws or prove correctness sometimes in a matter of seconds.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89242276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graph databases make use of logics that combine traditional first-order features with navigation on paths, in the same way logics for model checking do. However, modern applications of graph databases impose a new requirement on the expressiveness of the logics: they need comparing labels of paths based on word relations (such as prefix, subword, or subsequence). This has led to the study of logics that extend basic graph languages with features for comparing labels of paths based on regular relations, or the strictly more powerful rational relations. The evaluation problem for the former logic is decidable (and even tractable in data complexity), but already extending this logic with such a common rational relation as subword or suffix turns evaluation undecidable. In practice, however, it is rare to have the need for such powerful logics. Therefore, it is more realistic to study the complexity of less expressive logics that still allow comparing paths based on practically motivated rational relations. Here we concentrate on the most basic such languages, which extend graph pattern logics with path comparisons based only on suffix, subword or subsequence. We pinpoint the complexity of evaluation for each one of these logics, which shows that all of them are decidable in elementary time (PSpace or NExpTime). Furthermore, the extension with suffix is even tractable in data complexity (but the other two are not). In order to obtain our results we establish a link between the evaluation problem for graph logics and two important problems in word combinatorics: word equations with regular constraints and square shuffling.
{"title":"Graph logics with rational relations: the role of word combinatorics","authors":"P. Barceló, Pablo Muñoz","doi":"10.1145/2603088.2603122","DOIUrl":"https://doi.org/10.1145/2603088.2603122","url":null,"abstract":"Graph databases make use of logics that combine traditional first-order features with navigation on paths, in the same way logics for model checking do. However, modern applications of graph databases impose a new requirement on the expressiveness of the logics: they need comparing labels of paths based on word relations (such as prefix, subword, or subsequence). This has led to the study of logics that extend basic graph languages with features for comparing labels of paths based on regular relations, or the strictly more powerful rational relations. The evaluation problem for the former logic is decidable (and even tractable in data complexity), but already extending this logic with such a common rational relation as subword or suffix turns evaluation undecidable. In practice, however, it is rare to have the need for such powerful logics. Therefore, it is more realistic to study the complexity of less expressive logics that still allow comparing paths based on practically motivated rational relations. Here we concentrate on the most basic such languages, which extend graph pattern logics with path comparisons based only on suffix, subword or subsequence. We pinpoint the complexity of evaluation for each one of these logics, which shows that all of them are decidable in elementary time (PSpace or NExpTime). Furthermore, the extension with suffix is even tractable in data complexity (but the other two are not). In order to obtain our results we establish a link between the evaluation problem for graph logics and two important problems in word combinatorics: word equations with regular constraints and square shuffling.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76880331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many verification problems can be reduced to refinement verification. However, existing work on verifying refinement of concurrent programs either fails to prove the preservation of termination, allowing a diverging program to trivially refine any programs, or is difficult to apply in compositional thread-local reasoning. In this paper, we first propose a new simulation technique, which establishes termination-preserving refinement and is a congruence with respect to parallel composition. We then give a proof theory for the simulation, which is the first Hoare-style concurrent program logic supporting termination-preserving refinement proofs. We show two key applications of our logic, i.e., verifying linearizability and lock-freedom together for fine-grained concurrent objects, and verifying full correctness of optimizations of concurrent algorithms.
{"title":"Compositional verification of termination-preserving refinement of concurrent programs","authors":"Hongjin Liang, Xinyu Feng, Zhong Shao","doi":"10.1145/2603088.2603123","DOIUrl":"https://doi.org/10.1145/2603088.2603123","url":null,"abstract":"Many verification problems can be reduced to refinement verification. However, existing work on verifying refinement of concurrent programs either fails to prove the preservation of termination, allowing a diverging program to trivially refine any programs, or is difficult to apply in compositional thread-local reasoning. In this paper, we first propose a new simulation technique, which establishes termination-preserving refinement and is a congruence with respect to parallel composition. We then give a proof theory for the simulation, which is the first Hoare-style concurrent program logic supporting termination-preserving refinement proofs. We show two key applications of our logic, i.e., verifying linearizability and lock-freedom together for fine-grained concurrent objects, and verifying full correctness of optimizations of concurrent algorithms.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"128 4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82943646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To ensure consistency and decidability of type checking, proof assistants impose a requirement of productivity on corecursive definitions. In this paper we investigate a type-based alternative to the existing syntactic productivity checks of Coq and Agda, using a combination of guarded recursion and quantification over clocks. This approach was developed by Atkey and McBride in the simply typed setting, here we extend it to a calculus with dependent types. Building on previous work on the topos-of-trees model we construct a model of the calculus using a family of presheaf toposes, each of which can be seen as a multi-dimensional version of the topos-of-trees. As part of the model construction we must solve the coherence problem for modelling dependent types in locally cartesian closed categories simulatiously in a whole family of locally cartesian closed categories. We do this by embedding all the categories in a large one and applying a recent approach to the coherence problem due to Streicher and Voevodsky.
{"title":"A type theory for productive coprogramming via guarded recursion","authors":"Rasmus Ejlers Møgelberg","doi":"10.1145/2603088.2603132","DOIUrl":"https://doi.org/10.1145/2603088.2603132","url":null,"abstract":"To ensure consistency and decidability of type checking, proof assistants impose a requirement of productivity on corecursive definitions. In this paper we investigate a type-based alternative to the existing syntactic productivity checks of Coq and Agda, using a combination of guarded recursion and quantification over clocks. This approach was developed by Atkey and McBride in the simply typed setting, here we extend it to a calculus with dependent types. Building on previous work on the topos-of-trees model we construct a model of the calculus using a family of presheaf toposes, each of which can be seen as a multi-dimensional version of the topos-of-trees. As part of the model construction we must solve the coherence problem for modelling dependent types in locally cartesian closed categories simulatiously in a whole family of locally cartesian closed categories. We do this by embedding all the categories in a large one and applying a recent approach to the coherence problem due to Streicher and Voevodsky.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89525971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Algebraic structures abound in programming languages. The starting point for this paper is the following theorem: (first-order) algebraic signatures can themselves be described as free algebras for a (second-order) algebraic theory of substitution. Transporting this to the realm of programming languages, we investigate a computational metalanguage based on the theory of substitution, demonstrating that substituting corresponds to jumping in an abstract machine. We use the theorem to give an interpretation of a programming language with arbitrary algebraic effects into the metalanguage with substitution/jumps.
{"title":"Substitution, jumps, and algebraic effects","authors":"M. Fiore, S. Staton","doi":"10.1145/2603088.2603163","DOIUrl":"https://doi.org/10.1145/2603088.2603163","url":null,"abstract":"Algebraic structures abound in programming languages. The starting point for this paper is the following theorem: (first-order) algebraic signatures can themselves be described as free algebras for a (second-order) algebraic theory of substitution. Transporting this to the realm of programming languages, we investigate a computational metalanguage based on the theory of substitution, demonstrating that substituting corresponds to jumping in an abstract machine. We use the theorem to give an interpretation of a programming language with arbitrary algebraic effects into the metalanguage with substitution/jumps.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81250537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)