Integrated Approach of Evolving Petrophysical and Formation Testing Measurements Improves Hydrocarbon Reserves of Laminated Clastic Formations in Kuwait
{"title":"Integrated Approach of Evolving Petrophysical and Formation Testing Measurements Improves Hydrocarbon Reserves of Laminated Clastic Formations in Kuwait","authors":"Chao Chen, K. Sassi, H. Ayyad","doi":"10.2118/197381-ms","DOIUrl":null,"url":null,"abstract":"\n The characterization of the clastic Zubair reservoir is challenging because of the high lamination and the oil properties change making the conventional saturation technique uncertain. A new workflow has been recently established in the newly appraised wells which has involved advanced petrophysical measurements along with the fluid sampling. The new technique has led to identify new HC layers that were overlooked by the previous techniques, thus adding more reserves to the KOC asset.\n Because of the high lamination of clastic Zubair formation and the change of the oil properties, the dielectric dispersion measurement was integrated along with the diffusion-based NMR to identify new oil zones that has been initially masked by the resistivity-based approach. The new approach has also provided details on the oil movability and the characterization of its property. As the newly identified layers were identified for the 1st time across the field, the fluid sampling was conducted to confirm the new findings.\n The advent of a new logging technology from a multi-frequency dielectric technique deployed over the formation has independently pinned down the HC pays over the Zubair interval, including a new zone below the water column. The zone was initially identified as heavy Tar zone. The advanced diffusion-based NMR was thus conducted and integrated with Dielectrics which has demonstrated the movability of HC using the diffusion-based NMR approach over the newly identified zone. A fluid sampling was later performed which has confirmed the new finding. The new identified zone was initially overlooked by the previous interpretation and extensive modeling over the entire field. The seal mechanism was also explained by taking advantage of the high-resolution dielectric dispersion measurement (mainly the low frequency), which has been also supported by the Images interpretation. This new approach has added an incremental oil storage over the field.","PeriodicalId":11328,"journal":{"name":"Day 4 Thu, November 14, 2019","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197381-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The characterization of the clastic Zubair reservoir is challenging because of the high lamination and the oil properties change making the conventional saturation technique uncertain. A new workflow has been recently established in the newly appraised wells which has involved advanced petrophysical measurements along with the fluid sampling. The new technique has led to identify new HC layers that were overlooked by the previous techniques, thus adding more reserves to the KOC asset.
Because of the high lamination of clastic Zubair formation and the change of the oil properties, the dielectric dispersion measurement was integrated along with the diffusion-based NMR to identify new oil zones that has been initially masked by the resistivity-based approach. The new approach has also provided details on the oil movability and the characterization of its property. As the newly identified layers were identified for the 1st time across the field, the fluid sampling was conducted to confirm the new findings.
The advent of a new logging technology from a multi-frequency dielectric technique deployed over the formation has independently pinned down the HC pays over the Zubair interval, including a new zone below the water column. The zone was initially identified as heavy Tar zone. The advanced diffusion-based NMR was thus conducted and integrated with Dielectrics which has demonstrated the movability of HC using the diffusion-based NMR approach over the newly identified zone. A fluid sampling was later performed which has confirmed the new finding. The new identified zone was initially overlooked by the previous interpretation and extensive modeling over the entire field. The seal mechanism was also explained by taking advantage of the high-resolution dielectric dispersion measurement (mainly the low frequency), which has been also supported by the Images interpretation. This new approach has added an incremental oil storage over the field.