High thermal conductivity and remarkable damping composite gels as thermal interface materials for heat dissipation of chip

Chip Pub Date : 2022-06-01 DOI:10.1016/j.chip.2022.100013
Sheng-Chang Ding , Jian-Feng Fan , Dong-Yi He , Lin-Feng Cai , Xiang-Liang Zeng , Lin-Lin Ren , Guo-Ping Du , Xiao-Liang Zeng , Rong Sun
{"title":"High thermal conductivity and remarkable damping composite gels as thermal interface materials for heat dissipation of chip","authors":"Sheng-Chang Ding ,&nbsp;Jian-Feng Fan ,&nbsp;Dong-Yi He ,&nbsp;Lin-Feng Cai ,&nbsp;Xiang-Liang Zeng ,&nbsp;Lin-Lin Ren ,&nbsp;Guo-Ping Du ,&nbsp;Xiao-Liang Zeng ,&nbsp;Rong Sun","doi":"10.1016/j.chip.2022.100013","DOIUrl":null,"url":null,"abstract":"<div><p>The emerging applications of composite gels as thermal interface materials (TIMs) for chip heat dissipation in intelligent vehicle and wearable devices require high thermal conductivity and remarkable damping properties. However, thermal conductivity and damping properties are usually correlated and coupled each other. Here, inspired by Maxwell theory and adhesion mechanism of gecko's setae, we present a strategy to fabricate polydimethylsiloxane-based composite gels integrating high thermal conductivity and remarkable damping properties over a broad frequency and temperature range. The multiple relaxation modes of dangling chains and the dynamic interaction between the dangling chains and aluminum fillers can efficiently dissipate the vibration energy, endowing the composite gels with ultrahigh damping property (tan δ &gt; 0.3) over a broad frequency (0.01 – 100 Hz) and temperature range (–50 – 150 °C), which exceeds typical state-of-the-art damping materials. The dangling chains also comfort to the interfaces between polymer matrix and aluminum <em>via</em> van der Waals interaction, resulting in high thermal conductivity (4.72 ± 0.04 W m<sup>–1</sup> K<sup>–1</sup>). Using the polydimethylsiloxane-based composite gel as TIMs, we demonstrate effective heat dissipation in chip operating under vigorous vibrations. We believe that our strategy could be applied to a wide range of composite gels and lead to the development of high-performance composite gels as TIMs for chip heat dissipation.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"1 2","pages":"Article 100013"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472322000119/pdfft?md5=c55536d72023afcc72dda11db3dcff23&pid=1-s2.0-S2709472322000119-main.pdf","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472322000119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The emerging applications of composite gels as thermal interface materials (TIMs) for chip heat dissipation in intelligent vehicle and wearable devices require high thermal conductivity and remarkable damping properties. However, thermal conductivity and damping properties are usually correlated and coupled each other. Here, inspired by Maxwell theory and adhesion mechanism of gecko's setae, we present a strategy to fabricate polydimethylsiloxane-based composite gels integrating high thermal conductivity and remarkable damping properties over a broad frequency and temperature range. The multiple relaxation modes of dangling chains and the dynamic interaction between the dangling chains and aluminum fillers can efficiently dissipate the vibration energy, endowing the composite gels with ultrahigh damping property (tan δ > 0.3) over a broad frequency (0.01 – 100 Hz) and temperature range (–50 – 150 °C), which exceeds typical state-of-the-art damping materials. The dangling chains also comfort to the interfaces between polymer matrix and aluminum via van der Waals interaction, resulting in high thermal conductivity (4.72 ± 0.04 W m–1 K–1). Using the polydimethylsiloxane-based composite gel as TIMs, we demonstrate effective heat dissipation in chip operating under vigorous vibrations. We believe that our strategy could be applied to a wide range of composite gels and lead to the development of high-performance composite gels as TIMs for chip heat dissipation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高导热性和显著阻尼的复合凝胶作为芯片散热的热界面材料
复合凝胶作为智能汽车和可穿戴设备芯片散热的热界面材料(TIMs)的新兴应用需要高导热性和卓越的阻尼性能。然而,热导率和阻尼性能通常是相互关联和耦合的。在这里,受麦克斯韦理论和壁虎刚毛粘附机理的启发,我们提出了一种制造聚二甲基硅氧烷基复合凝胶的策略,该凝胶在宽频率和宽温度范围内具有高导热性和显著的阻尼性能。悬垂链的多种松弛模式以及悬垂链与铝填料之间的动态相互作用可以有效地耗散振动能量,使复合凝胶具有超高的阻尼性能(tan δ >0.3)在宽频率(0.01 - 100 Hz)和温度范围(- 50 - 150°C),这超过了典型的最先进的阻尼材料。悬垂链还通过范德华相互作用使聚合物基体与铝之间的界面更加舒适,从而获得高导热系数(4.72±0.04 W m-1 K-1)。使用聚二甲基硅氧烷基复合凝胶作为TIMs,我们证明了芯片在剧烈振动下的有效散热。我们相信我们的策略可以应用于广泛的复合凝胶,并导致高性能复合凝胶作为芯片散热的TIMs的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy Suspended nanomembrane silicon photonic integrated circuits Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1