A Machine Teaching Framework for Scalable Recognition

Pei Wang, N. Vasconcelos
{"title":"A Machine Teaching Framework for Scalable Recognition","authors":"Pei Wang, N. Vasconcelos","doi":"10.1109/ICCV48922.2021.00490","DOIUrl":null,"url":null,"abstract":"We consider the scalable recognition problem in the fine-grained expert domain where large-scale data collection is easy whereas annotation is difficult. Existing solutions are typically based on semi-supervised or self-supervised learning. We propose an alternative new framework, MEMORABLE, based on machine teaching and online crowd-sourcing platforms. A small amount of data is first labeled by experts and then used to teach online annotators for the classes of interest, who finally label the entire dataset. Preliminary studies show that the accuracy of classifiers trained on the final dataset is a function of the accuracy of the student annotators. A new machine teaching algorithm, CMaxGrad, is then proposed to enhance this accuracy by introducing explanations in a state-of-the-art machine teaching algorithm. For this, CMaxGrad leverages counterfactual explanations, which take into account student predictions, thereby proving feedback that is student-specific, explicitly addresses the causes of student confusion, and adapts to the level of competence of the student. Experiments show that both MEMORABLE and CMaxGrad outperform existing solutions to their respective problems.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"48 1","pages":"4925-4934"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We consider the scalable recognition problem in the fine-grained expert domain where large-scale data collection is easy whereas annotation is difficult. Existing solutions are typically based on semi-supervised or self-supervised learning. We propose an alternative new framework, MEMORABLE, based on machine teaching and online crowd-sourcing platforms. A small amount of data is first labeled by experts and then used to teach online annotators for the classes of interest, who finally label the entire dataset. Preliminary studies show that the accuracy of classifiers trained on the final dataset is a function of the accuracy of the student annotators. A new machine teaching algorithm, CMaxGrad, is then proposed to enhance this accuracy by introducing explanations in a state-of-the-art machine teaching algorithm. For this, CMaxGrad leverages counterfactual explanations, which take into account student predictions, thereby proving feedback that is student-specific, explicitly addresses the causes of student confusion, and adapts to the level of competence of the student. Experiments show that both MEMORABLE and CMaxGrad outperform existing solutions to their respective problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向可扩展识别的机器教学框架
我们考虑了细粒度专家领域的可扩展识别问题,该领域的大规模数据收集容易,而标注困难。现有的解决方案通常基于半监督或自监督学习。我们提出了另一种新的框架,基于机器教学和在线众包平台的难忘框架。少量数据首先由专家标记,然后用于教授感兴趣的类的在线注释者,他们最终标记整个数据集。初步研究表明,在最终数据集上训练的分类器的准确性是学生注释器准确性的函数。然后提出了一种新的机器教学算法CMaxGrad,通过在最先进的机器教学算法中引入解释来提高这种准确性。为此,CMaxGrad利用反事实解释,考虑到学生的预测,从而证明反馈是针对学生的,明确地解决了学生困惑的原因,并适应学生的能力水平。实验表明,对于各自的问题,难忘和CMaxGrad都优于现有的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1