Application of Cloud Model and Matter Element Theory in Transformer Fault Diagnosis

Tao Wang, Li-qun Shang, Xianmin Ma
{"title":"Application of Cloud Model and Matter Element Theory in Transformer Fault Diagnosis","authors":"Tao Wang, Li-qun Shang, Xianmin Ma","doi":"10.1109/IAEAC.2018.8577253","DOIUrl":null,"url":null,"abstract":"Based on cloud model and matter element theory, and combining the uncertain reasoning characteristics of the cloud model and qualitative and quantitative analysis can be carried out at the same time by matter element theory, a power transformer fault diagnosis method is proposed, which effectively solves the problem of fewer data samples, especially fewer fault data samples. Taking the actual data as an example, the improved matter-element theory model and correlation calculation data are compared, and the results show that the improved matter element theory model has higher diagnostic accuracy than traditional methods. Example analysis verifies the correctness and effectiveness of the method.","PeriodicalId":6573,"journal":{"name":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"32 1","pages":"2089-2092"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2018.8577253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Based on cloud model and matter element theory, and combining the uncertain reasoning characteristics of the cloud model and qualitative and quantitative analysis can be carried out at the same time by matter element theory, a power transformer fault diagnosis method is proposed, which effectively solves the problem of fewer data samples, especially fewer fault data samples. Taking the actual data as an example, the improved matter-element theory model and correlation calculation data are compared, and the results show that the improved matter element theory model has higher diagnostic accuracy than traditional methods. Example analysis verifies the correctness and effectiveness of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云模型和物元理论在变压器故障诊断中的应用
基于云模型和物元理论,结合云模型的不确定推理特点和物元理论可同时进行定性和定量分析的特点,提出了一种电力变压器故障诊断方法,有效地解决了数据样本少,特别是故障数据样本少的问题。以实际数据为例,将改进的物元理论模型与相关计算数据进行比较,结果表明改进的物元理论模型比传统方法具有更高的诊断精度。算例分析验证了该方法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent module for recognizing emotions by voice Modeling of thermophysiological state of man Intelligent support system for agro-technological decisions for sowing fields Analysis of visual object tracking algorithms for real-time systems Choosing the best parameters for method of deformed stars in n-dimensional space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1