Synthesis of Microsheets Bi4Ti3O12 and Bi4Ti2.95V0.05O12 via Molten NaCl-KCl Salt Method

A. Prasetyo, Andy Nur Muhammad Guntur, Suci Noerfaiqotul Himmah, N. Aini, Usman Ali Rouf, A. Aziz
{"title":"Synthesis of Microsheets Bi4Ti3O12 and Bi4Ti2.95V0.05O12 via Molten NaCl-KCl Salt Method","authors":"A. Prasetyo, Andy Nur Muhammad Guntur, Suci Noerfaiqotul Himmah, N. Aini, Usman Ali Rouf, A. Aziz","doi":"10.21776/ub.jpacr.2022.011.03.703","DOIUrl":null,"url":null,"abstract":"Bi4Ti3O12 is a tri-layer Aurivillius member compound that was reported to have good photocatalytic properties. Metal element doping and morphological particle tuning are strategies to increase photocatalyst activity. In this research, the compound micro sheets Bi4Ti3O12 and Bi4Ti2.95V0.05O12 were synthesized using molten NaCl/KCl salt. The diffractogram shows that the Bi4Ti3O12 sample was successfully synthesized, however, there are still found impurities at the Bi4Ti2.95V0.05O12 sample. Micrographs showed that the morphology particle samples is. The results of UV-Vis DRS spectra calculation show that both samples have a band gap energy of ~2.97 eV.","PeriodicalId":22728,"journal":{"name":"The Journal of Pure and Applied Chemistry Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pure and Applied Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/ub.jpacr.2022.011.03.703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bi4Ti3O12 is a tri-layer Aurivillius member compound that was reported to have good photocatalytic properties. Metal element doping and morphological particle tuning are strategies to increase photocatalyst activity. In this research, the compound micro sheets Bi4Ti3O12 and Bi4Ti2.95V0.05O12 were synthesized using molten NaCl/KCl salt. The diffractogram shows that the Bi4Ti3O12 sample was successfully synthesized, however, there are still found impurities at the Bi4Ti2.95V0.05O12 sample. Micrographs showed that the morphology particle samples is. The results of UV-Vis DRS spectra calculation show that both samples have a band gap energy of ~2.97 eV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熔融NaCl-KCl盐法制备Bi4Ti3O12和Bi4Ti2.95V0.05O12微片
Bi4Ti3O12是一种三层Aurivillius成员化合物,具有良好的光催化性能。金属元素掺杂和形态粒子调整是提高光催化剂活性的策略。本研究采用熔融NaCl/KCl盐合成了Bi4Ti3O12和Bi4Ti2.95V0.05O12复合微片。衍射图显示,Bi4Ti3O12样品成功合成,但在Bi4Ti2.95V0.05O12样品中仍发现杂质。显微照片显示,颗粒样品的形貌为。紫外-可见DRS光谱计算结果表明,两种样品的能带能均为~2.97 eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of volatile compounds in several meat and bone broth using Solid Phase Micro Extraction-Gas Chromatography Mass Spectrometry (SPME-GCMS) for initial detection of Halal and Non-Halal Food Antidiabetic Activity of the Methanol Fraction of Sungkai Leaves (Peronema canescens Jack) Effects of Preparation Temperature and Liquid-Solid Lipid Composition to Curcumin-Nanostructured Lipid Carrier Characteristics Fabricated by Microfluidic Technique Effect of Avocado Seed Ethanol Extract (Persea americana Mill) on Superoxide Dismutase (SOD1) and Histological Expression of Pancreas in Rats (Rattus norvegicus) with Diabetes Mellitus Potential Cassava Peel Waste (Manihot esculenta Crantz) in The Production of Bioethanol by Enzymatic Hydrolysis and Fermentation Using Zymomonas mobilis Bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1