Simulation study and experimental validation of a neural network-based predictive tracking system for sensor-based sorting

IF 0.8 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION Tm-Technisches Messen Pub Date : 2023-05-15 DOI:10.1515/teme-2023-0033
G. Maier, Marcel Reith-Braun, Albert Bauer, R. Gruna, F. Pfaff, H. Kruggel-Emden, T. Längle, U. Hanebeck, J. Beyerer
{"title":"Simulation study and experimental validation of a neural network-based predictive tracking system for sensor-based sorting","authors":"G. Maier, Marcel Reith-Braun, Albert Bauer, R. Gruna, F. Pfaff, H. Kruggel-Emden, T. Längle, U. Hanebeck, J. Beyerer","doi":"10.1515/teme-2023-0033","DOIUrl":null,"url":null,"abstract":"Abstract Sensor-based sorting offers cutting-edge solutions for separating granular materials. The line-scanning sensors currently in use in such systems only produce a single observation of each object and no data on its movement. According to recent studies, using an area-scan camera has the potential to reduce both characterization and separation error in a sorting process. A predictive tracking approach based on Kalman filters makes it possible to estimate the followed paths and parametrize a unique motion model for each object using a multiobject tracking system. While earlier studies concentrated on physically-motivated motion models, it has been demonstrated that novel machine learning techniques produce predictions that are more accurate. In this paper, we describe the creation of a predictive tracking system based on neural networks. The new algorithm is applied to an experimental sorting system and to a numerical model of the sorter. Although the new approach does not yet fully reach the achieved sorting quality of the existing approaches, it allows the use of the general method without requiring expert knowledge or a fundamental understanding of the parameterization of the particle motion model.","PeriodicalId":56086,"journal":{"name":"Tm-Technisches Messen","volume":"6 1","pages":"489 - 499"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tm-Technisches Messen","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/teme-2023-0033","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Sensor-based sorting offers cutting-edge solutions for separating granular materials. The line-scanning sensors currently in use in such systems only produce a single observation of each object and no data on its movement. According to recent studies, using an area-scan camera has the potential to reduce both characterization and separation error in a sorting process. A predictive tracking approach based on Kalman filters makes it possible to estimate the followed paths and parametrize a unique motion model for each object using a multiobject tracking system. While earlier studies concentrated on physically-motivated motion models, it has been demonstrated that novel machine learning techniques produce predictions that are more accurate. In this paper, we describe the creation of a predictive tracking system based on neural networks. The new algorithm is applied to an experimental sorting system and to a numerical model of the sorter. Although the new approach does not yet fully reach the achieved sorting quality of the existing approaches, it allows the use of the general method without requiring expert knowledge or a fundamental understanding of the parameterization of the particle motion model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的传感器分拣预测跟踪系统仿真研究与实验验证
基于传感器的分选为颗粒物料的分离提供了先进的解决方案。目前在这种系统中使用的线扫描传感器只能对每个物体进行一次观察,而不能提供其运动的数据。根据最近的研究,使用区域扫描相机有可能减少分选过程中的表征和分离误差。一种基于卡尔曼滤波的预测跟踪方法使多目标跟踪系统能够估计跟踪路径并参数化每个目标的唯一运动模型。虽然早期的研究集中在物理驱动的运动模型上,但已经证明,新的机器学习技术可以产生更准确的预测。在本文中,我们描述了一个基于神经网络的预测跟踪系统的创建。将新算法应用于实验分选系统和分选机的数值模型。虽然新方法还没有完全达到现有方法的分类质量,但它允许使用一般方法,而不需要专家知识或对粒子运动模型参数化的基本理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tm-Technisches Messen
Tm-Technisches Messen 工程技术-仪器仪表
CiteScore
1.70
自引率
20.00%
发文量
105
审稿时长
6-12 weeks
期刊介绍: The journal promotes dialogue between the developers of application-oriented sensors, measurement systems, and measurement methods and the manufacturers and measurement technologists who use them. Topics The manufacture and characteristics of new sensors for measurement technology in the industrial sector New measurement methods Hardware and software based processing and analysis of measurement signals to obtain measurement values The outcomes of employing new measurement systems and methods.
期刊最新文献
Miniaturisation of label free surface analytics by Whispering Gallery Modes Number of samples to use in estimating sinewave amplitude in the presence of noise Frontmatter 16th Dresden Sensor Symposium Integrating metrological principles into the Internet of Things: a digital maturity model for sensor network metrology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1