Naphthalene Sorption to Organic Additives in Cement-Treated Soils

C. Lake, Jill Searle, Evan Bridson-Pateman
{"title":"Naphthalene Sorption to Organic Additives in Cement-Treated Soils","authors":"C. Lake, Jill Searle, Evan Bridson-Pateman","doi":"10.1520/JAI104302","DOIUrl":null,"url":null,"abstract":"Cement-based solidification/stabilization (S/S) is a widely used source-controlled treatment method for contaminated sediments. Increasingly, the technology is being used to remediate sites that contain high molecular weight organic compounds. The low level of organic content in cement-based S/S mixtures often creates a need for organic additives in the mixtures in order to improve the level of sorption in the treatment process. Very little work has been published related to the quantification of the sorption of organic contaminants to cement-based S/S mixtures and the level of improvement afforded by additives such as fly ash and organoclays. The objective of this study is to examine the sorption levels of naphthalene to several cement-treated soil mixtures with and without organic additives (i.e., fly ash and organoclay) using batch testing. It is found that the sorption values of naphthalene vary but appear to be dependent on the amount of organic carbon present in the mixture. In order to assess the potential benefit of this improved sorption for field applications, contaminant migration modeling is performed using the results obtained. It is shown that cement-based S/S remediation systems can provide long-term protection against naphthalene contaminant migration, especially cement-based S/S mixtures with organoclay additives, for the assumptions considered in the modeling.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI104302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Cement-based solidification/stabilization (S/S) is a widely used source-controlled treatment method for contaminated sediments. Increasingly, the technology is being used to remediate sites that contain high molecular weight organic compounds. The low level of organic content in cement-based S/S mixtures often creates a need for organic additives in the mixtures in order to improve the level of sorption in the treatment process. Very little work has been published related to the quantification of the sorption of organic contaminants to cement-based S/S mixtures and the level of improvement afforded by additives such as fly ash and organoclays. The objective of this study is to examine the sorption levels of naphthalene to several cement-treated soil mixtures with and without organic additives (i.e., fly ash and organoclay) using batch testing. It is found that the sorption values of naphthalene vary but appear to be dependent on the amount of organic carbon present in the mixture. In order to assess the potential benefit of this improved sorption for field applications, contaminant migration modeling is performed using the results obtained. It is shown that cement-based S/S remediation systems can provide long-term protection against naphthalene contaminant migration, especially cement-based S/S mixtures with organoclay additives, for the assumptions considered in the modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水泥处理土壤中萘对有机添加剂的吸附
水泥基固化/稳定化(S/S)是一种广泛应用于污染沉积物的源控制处理方法。该技术越来越多地被用于修复含有高分子量有机化合物的位点。水泥基S/S混合物中的有机含量较低,通常需要在混合物中添加有机添加剂,以提高处理过程中的吸附水平。有关有机污染物对水泥基S/S混合物的吸附的量化以及粉煤灰和有机粘土等添加剂所提供的改善水平的工作发表得很少。本研究的目的是通过批量测试,检查几种有和不含有机添加剂(即粉煤灰和有机粘土)的水泥处理土壤混合物对萘的吸附水平。发现萘的吸附值不同,但似乎取决于混合物中存在的有机碳的量。为了评估这种改进的吸附对现场应用的潜在好处,利用获得的结果进行了污染物迁移建模。研究表明,根据模型中考虑的假设,水泥基S/S修复系统可以提供长期保护,防止萘污染物迁移,特别是含有有机粘土添加剂的水泥基S/S混合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flame Retardant Emissions from Spray Polyurethane Foam Insulation Economic Impact of Improved Service-Life Prediction for Seams in Low-Slope EPDM Roofing The Economics of Residential Fire Sprinklers and the Potential Impact of Recent Code Changes Roller Profile Development for an Axially Loaded, Single Row Spherical Roller Bearing in an Oscillating Application Characterization of Adhesive Joints for Hybrid Steel-Glass Beams by Means of Simplified Small Scale Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1