Modelling of the H2020 INSPYRE Fuel Creep Experiment

A. Fedorov, Kevin Zwijsen, S. V. Til
{"title":"Modelling of the H2020 INSPYRE Fuel Creep Experiment","authors":"A. Fedorov, Kevin Zwijsen, S. V. Til","doi":"10.1115/icone2020-16231","DOIUrl":null,"url":null,"abstract":"\n To better understand irradiation creep of nuclear fuel, NRG has prepared, as part of the H2020 European project INSPYRE, a separate effect irradiation experiment in the High Flux Reactor (HFR) in Petten (the Netherlands) aiming to measure fuel creep in-pile as a function of temperature, flux, burn-up and axial pressure load. This continuous type of measurement will supply a large data set, leading to more detailed knowledge on fuel behaviour during irradiation. To support the experiment and make optimal use of the generated data, a model is created of the experiment to better predict the behaviour of the fuel samples during irradiation. The current paper describes the numerical model, which couples the 1.5D fuel performance code TRANSURANUS (TU) with a Finite Element Analysis (FEA). The thermal analysis of the experiment is carried out using the FEA. Such approach enables to model a rather complex geometry of the experiment, and to include axial heat transport, which is not implemented in TU. TU is modified in order to use the fuel pellet temperatures obtained using the FEA and to include the axial load present in the experiment. The model is validated against several test cases and used to predict the fuel behaviour during a selection of foreseen irradiation scenario’s. Results of the model will be used in the future for optimization of the irradiation parameters used in the experiment and for analysis of the data obtained during the irradiation.","PeriodicalId":63646,"journal":{"name":"核工程研究与设计","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"核工程研究与设计","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/icone2020-16231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To better understand irradiation creep of nuclear fuel, NRG has prepared, as part of the H2020 European project INSPYRE, a separate effect irradiation experiment in the High Flux Reactor (HFR) in Petten (the Netherlands) aiming to measure fuel creep in-pile as a function of temperature, flux, burn-up and axial pressure load. This continuous type of measurement will supply a large data set, leading to more detailed knowledge on fuel behaviour during irradiation. To support the experiment and make optimal use of the generated data, a model is created of the experiment to better predict the behaviour of the fuel samples during irradiation. The current paper describes the numerical model, which couples the 1.5D fuel performance code TRANSURANUS (TU) with a Finite Element Analysis (FEA). The thermal analysis of the experiment is carried out using the FEA. Such approach enables to model a rather complex geometry of the experiment, and to include axial heat transport, which is not implemented in TU. TU is modified in order to use the fuel pellet temperatures obtained using the FEA and to include the axial load present in the experiment. The model is validated against several test cases and used to predict the fuel behaviour during a selection of foreseen irradiation scenario’s. Results of the model will be used in the future for optimization of the irradiation parameters used in the experiment and for analysis of the data obtained during the irradiation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H2020 INSPYRE燃料蠕变试验的建模
为了更好地了解核燃料的辐照蠕变,作为H2020欧洲项目INSPYRE的一部分,NRG在荷兰Petten的高通量反应堆(HFR)中准备了一个单独的效应辐照实验,旨在测量堆内燃料蠕变作为温度、通量、燃烧和轴压载荷的函数。这种连续类型的测量将提供大量数据集,从而更详细地了解辐照期间的燃料行为。为了支持实验并最佳地利用所产生的数据,建立了实验模型,以更好地预测燃料样品在辐照期间的行为。本文描述了将1.5D燃油性能代码TRANSURANUS (TU)与有限元分析(FEA)耦合在一起的数值模型。利用有限元法对实验进行了热分析。这种方法能够模拟一个相当复杂的实验几何,并包括轴向热传输,这在TU中没有实现。TU被修改,以便使用通过有限元分析获得的燃料颗粒温度,并包括实验中存在的轴向负荷。该模型通过几个试验案例进行了验证,并用于预测在可预见的辐照情景中燃料的行为。该模型的结果将在将来用于优化实验中使用的辐照参数和分析辐照过程中获得的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
922
期刊最新文献
Thermal Efficiency Optimization of a Modular High Temperature Gas-Cooled Reactor Plant by Extraction Steam Distribution Study on the Effect of Different Factors of Displacement Cascades in Alpha-Fe by Molecular Dynamics Simulations Sensitivity Analysis of External Exposure Dose for Future Burial Measures of Decontamination Soil Generated Outside Fukushima Prefecture Investigating Structural Response of Pressure Reducing Valve of Supercritical Steam Generator System Under Cyclic Moments, Thermal Transient, and Pressure Loadings Fatigue Risk Evaluation of a Pressure Vessel Plug Subject to Flow Induced Vibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1