BuildingNet: Learning to Label 3D Buildings

Pratheba Selvaraju, Mohamed Nabail, Marios Loizou, Maria I. Maslioukova, Melinos Averkiou, Andreas C. Andreou, S. Chaudhuri, E. Kalogerakis
{"title":"BuildingNet: Learning to Label 3D Buildings","authors":"Pratheba Selvaraju, Mohamed Nabail, Marios Loizou, Maria I. Maslioukova, Melinos Averkiou, Andreas C. Andreou, S. Chaudhuri, E. Kalogerakis","doi":"10.1109/ICCV48922.2021.01023","DOIUrl":null,"url":null,"abstract":"We introduce BuildingNet: (a) a large-scale dataset of 3D building models whose exteriors are consistently labeled, and (b) a graph neural network that labels building meshes by analyzing spatial and structural relations of their geometric primitives. To create our dataset, we used crowdsourcing combined with expert guidance, resulting in 513K annotated mesh primitives, grouped into 292K semantic part components across 2K building models. The dataset covers several building categories, such as houses, churches, skyscrapers, town halls, libraries, and castles. We include a benchmark for evaluating mesh and point cloud labeling. Buildings have more challenging structural complexity compared to objects in existing benchmarks (e.g., ShapeNet, PartNet), thus, we hope that our dataset can nurture the development of algorithms that are able to cope with such large-scale geometric data for both vision and graphics tasks e.g., 3D semantic segmentation, part-based generative models, correspondences, texturing, and analysis of point cloud data acquired from real-world buildings. Finally, we show that our mesh-based graph neural network significantly improves performance over several baselines for labeling 3D meshes. Our project page www.buildingnet.org includes our dataset and code.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"12 1","pages":"10377-10387"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We introduce BuildingNet: (a) a large-scale dataset of 3D building models whose exteriors are consistently labeled, and (b) a graph neural network that labels building meshes by analyzing spatial and structural relations of their geometric primitives. To create our dataset, we used crowdsourcing combined with expert guidance, resulting in 513K annotated mesh primitives, grouped into 292K semantic part components across 2K building models. The dataset covers several building categories, such as houses, churches, skyscrapers, town halls, libraries, and castles. We include a benchmark for evaluating mesh and point cloud labeling. Buildings have more challenging structural complexity compared to objects in existing benchmarks (e.g., ShapeNet, PartNet), thus, we hope that our dataset can nurture the development of algorithms that are able to cope with such large-scale geometric data for both vision and graphics tasks e.g., 3D semantic segmentation, part-based generative models, correspondences, texturing, and analysis of point cloud data acquired from real-world buildings. Finally, we show that our mesh-based graph neural network significantly improves performance over several baselines for labeling 3D meshes. Our project page www.buildingnet.org includes our dataset and code.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BuildingNet:学习标记3D建筑
我们介绍了BuildingNet:(a)一个大规模的三维建筑模型数据集,其外部被一致地标记;(b)一个通过分析其几何基元的空间和结构关系来标记建筑网格的图神经网络。为了创建我们的数据集,我们使用了众包和专家指导相结合的方法,得到了513K个带注释的网格原语,在2K个建筑模型中分为292K个语义部分组件。该数据集涵盖了几个建筑类别,如房屋、教堂、摩天大楼、市政厅、图书馆和城堡。我们包含了一个评估网格和点云标记的基准。与现有基准(例如ShapeNet, PartNet)中的对象相比,建筑物具有更具挑战性的结构复杂性,因此,我们希望我们的数据集能够促进算法的发展,这些算法能够处理视觉和图形任务中的大规模几何数据,例如3D语义分割,基于零件的生成模型,对应,纹理和从现实世界中获取的点云数据的分析。最后,我们证明了我们基于网格的图神经网络在标记3D网格的几个基线上显着提高了性能。我们的项目页面www.buildingnet.org包含我们的数据集和代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1