{"title":"On the Feasibility of a High-Sensitivity Imaging System for Biomedical Applications Based on Low-Frequency Magnetic Field","authors":"Sabrina Rotundo;Danilo Brizi;Agostino Monorchio","doi":"10.1109/JERM.2023.3308377","DOIUrl":null,"url":null,"abstract":"In this article, the theoretical and experimental feasibility analyses of a high-sensitivity imaging system for non-invasive detection of pathological inclusions within biological tissues are presented. The radiating system, exploiting a low frequency magnetic field operating at 3 MHz, consists of an inner resonant spiral sensor, inductively coupled to an unloaded external planar probe loop. The proposed configuration produces a focused magnetic field distribution, therefore a high-sensitivity imaging with respect to the wavelength can be accomplished (detecting inclusions with size in the order of λ/10000, i.e., 1 cm). In particular, the inclusion detection is carried out by observing the amplitude shift of the external probe loop input impedance while scanning the region of interest, leading to a non-invasive and contactless imaging procedure. In addition, we demonstrate the possibility to detect an inclusion, placed within the investigated tissue, either with or without the use of a ferromagnetic contrast medium. To evaluate the proposed imaging system effectiveness, we first perform full-wave numerical simulations. Then, we report the experimental measurements acquired over a fabricated prototype interacting with a representative biological phantom, observing a very good agreement with the numerical simulations. The results confirm the potential for an innovative near-field imaging system to be employed for non-invasive detection of malignant inclusions, expanding the adoption of low RF frequencies in biomedical applications.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 4","pages":"400-407"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10236580","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10236580/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the theoretical and experimental feasibility analyses of a high-sensitivity imaging system for non-invasive detection of pathological inclusions within biological tissues are presented. The radiating system, exploiting a low frequency magnetic field operating at 3 MHz, consists of an inner resonant spiral sensor, inductively coupled to an unloaded external planar probe loop. The proposed configuration produces a focused magnetic field distribution, therefore a high-sensitivity imaging with respect to the wavelength can be accomplished (detecting inclusions with size in the order of λ/10000, i.e., 1 cm). In particular, the inclusion detection is carried out by observing the amplitude shift of the external probe loop input impedance while scanning the region of interest, leading to a non-invasive and contactless imaging procedure. In addition, we demonstrate the possibility to detect an inclusion, placed within the investigated tissue, either with or without the use of a ferromagnetic contrast medium. To evaluate the proposed imaging system effectiveness, we first perform full-wave numerical simulations. Then, we report the experimental measurements acquired over a fabricated prototype interacting with a representative biological phantom, observing a very good agreement with the numerical simulations. The results confirm the potential for an innovative near-field imaging system to be employed for non-invasive detection of malignant inclusions, expanding the adoption of low RF frequencies in biomedical applications.