{"title":"DNA attachment to optically trapped beads in microstructures monitored by bead displacement","authors":"J Dapprich, N Nicklaus","doi":"10.1002/1361-6374(199803)6:1<25::AID-BIO4>3.0.CO;2-H","DOIUrl":null,"url":null,"abstract":"<p>Reversibly binding silicone cartridges have been developed to form reaction containers in which ‘single molecule chemistry’ can be performed. We use an optical trap to drive 1μm streptavidin-coated beads into a region containing biotinylated DNA until binding of a strand of DNA occurs. A quadrant detector is used in reflective mode to track the lateral position of trapped beads. Relative motion between the bead and the solution causes a viscous drag force which is increased when a single strand of DNA is attached to the bead; DNA-bead attachment is done in minutes with less than a femtomole of DNA. The method allows the study of single molecule digestion.</p>","PeriodicalId":100176,"journal":{"name":"Bioimaging","volume":"6 1","pages":"25-32"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1361-6374(199803)6:1<25::AID-BIO4>3.0.CO;2-H","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1361-6374%28199803%296%3A1%3C25%3A%3AAID-BIO4%3E3.0.CO%3B2-H","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Reversibly binding silicone cartridges have been developed to form reaction containers in which ‘single molecule chemistry’ can be performed. We use an optical trap to drive 1μm streptavidin-coated beads into a region containing biotinylated DNA until binding of a strand of DNA occurs. A quadrant detector is used in reflective mode to track the lateral position of trapped beads. Relative motion between the bead and the solution causes a viscous drag force which is increased when a single strand of DNA is attached to the bead; DNA-bead attachment is done in minutes with less than a femtomole of DNA. The method allows the study of single molecule digestion.