{"title":"PHB Produced by Bacteria Present in the Argan Field Soil: A New Perspective for the Synthesis of the Bio-Based Polymer","authors":"Amina Aragosa, V. Specchia, M. Frigione","doi":"10.3390/CGPM2020-07226","DOIUrl":null,"url":null,"abstract":"Bio-based plastics, i.e., non-synthetic polymers produced from renewable resources are gaining special attention as a feasible solution to the environmental issues caused by concerns regarding the impact of waste plastics. Furthermore, such materials can also represent an alternative to petroleum-derived polymers, due to the scarcity of this raw material in the near future. In the polyhydroxyalkanoates (PHA) family, polyhydroxybutyrate (PHB) was the first to be synthesized and characterized. PHB soon gained great attention from industrial and academic researchers since it can be synthesized from a wide variety of available carbon sources, such as agro-industrial and domestic wastes. The aim of this original research has been the identification of the presence of PHB synthetizing bacteria in some soils in a Moroccan region and the production of the bio-based PHB. In particular, the soils of the argan fields in Taroudant were considered. Taroudant is a southwestern region of Morocco where the argan oil tree Argania spinosa is an endemic and preserved species. Starting from rhizospheric soil samples of an argan crop area, we isolated heat-resistant bacteria and obtained pure cultures from it. These bacteria present intracellular endospores stained by the Schaeffer-Fulton method. The presence of intracellular endospores is a very important starting point to verify the effective production of PHB as a compartmentalized material. Further analyses are currently ongoing to try to extract and characterize PHB granules.","PeriodicalId":20633,"journal":{"name":"Proceedings of The First International Conference on “Green” Polymer Materials 2020","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The First International Conference on “Green” Polymer Materials 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/CGPM2020-07226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Bio-based plastics, i.e., non-synthetic polymers produced from renewable resources are gaining special attention as a feasible solution to the environmental issues caused by concerns regarding the impact of waste plastics. Furthermore, such materials can also represent an alternative to petroleum-derived polymers, due to the scarcity of this raw material in the near future. In the polyhydroxyalkanoates (PHA) family, polyhydroxybutyrate (PHB) was the first to be synthesized and characterized. PHB soon gained great attention from industrial and academic researchers since it can be synthesized from a wide variety of available carbon sources, such as agro-industrial and domestic wastes. The aim of this original research has been the identification of the presence of PHB synthetizing bacteria in some soils in a Moroccan region and the production of the bio-based PHB. In particular, the soils of the argan fields in Taroudant were considered. Taroudant is a southwestern region of Morocco where the argan oil tree Argania spinosa is an endemic and preserved species. Starting from rhizospheric soil samples of an argan crop area, we isolated heat-resistant bacteria and obtained pure cultures from it. These bacteria present intracellular endospores stained by the Schaeffer-Fulton method. The presence of intracellular endospores is a very important starting point to verify the effective production of PHB as a compartmentalized material. Further analyses are currently ongoing to try to extract and characterize PHB granules.