Exploring categorization property of social annotations for information retrieval

Peng Li, Bin Wang, Wei Jin, Jian-Yun Nie, Zhiwei Shi, Ben He
{"title":"Exploring categorization property of social annotations for information retrieval","authors":"Peng Li, Bin Wang, Wei Jin, Jian-Yun Nie, Zhiwei Shi, Ben He","doi":"10.1145/2063576.2063659","DOIUrl":null,"url":null,"abstract":"User generated social annotations provide extra information for describing document contents. In this paper, we propose an effective method to model the categorization property of social annotations and explore the potential of combining it with classical language models for improving retrieval performance. Specifically, a novel TR-LDA model is presented to take annotations as an additional source for generating document contents apart from the document itself. We provide strategies for representing and weighting the categorization property and develop an efficient inference algorithm, where space saving is taken into account. Experiments are carried out on synthetic datasets, where documents and queries come from the standard evaluation conference TREC and annotations come from the website Delicious.com. Our results demonstrate the effectiveness of the proposed method on the ad-hoc retrieval task, which significantly outperforms state-of-art baselines.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"1 1","pages":"557-562"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

User generated social annotations provide extra information for describing document contents. In this paper, we propose an effective method to model the categorization property of social annotations and explore the potential of combining it with classical language models for improving retrieval performance. Specifically, a novel TR-LDA model is presented to take annotations as an additional source for generating document contents apart from the document itself. We provide strategies for representing and weighting the categorization property and develop an efficient inference algorithm, where space saving is taken into account. Experiments are carried out on synthetic datasets, where documents and queries come from the standard evaluation conference TREC and annotations come from the website Delicious.com. Our results demonstrate the effectiveness of the proposed method on the ad-hoc retrieval task, which significantly outperforms state-of-art baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索面向信息检索的社交注释的分类特性
用户生成的社交注释为描述文档内容提供了额外的信息。在本文中,我们提出了一种有效的方法来建模社交注释的分类属性,并探讨了将其与经典语言模型相结合以提高检索性能的潜力。具体来说,提出了一种新的TR-LDA模型,将注释作为生成文档内容的额外来源。我们提供了表示和加权分类属性的策略,并开发了一个有效的推理算法,其中考虑到节省空间。实验在合成数据集上进行,其中文档和查询来自标准评估会议TREC,注释来自Delicious.com网站。我们的结果证明了所提出的方法在临时检索任务上的有效性,显著优于最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data. iMIRACLE: an Iterative Multi-View Graph Neural Network to Model Intercellular Gene Regulation from Spatial Transcriptomic Data. Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing. Enabling Health Data Sharing with Fine-Grained Privacy. MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1