Multiscale geovisual analysis of knowledge innovation patterns using big scholarly data

IF 2.7 Q1 GEOGRAPHY Annals of GIS Pub Date : 2022-01-16 DOI:10.1080/19475683.2022.2027012
Chenyu Zuo, L. Ding, Zhuoni Yang, L. Meng
{"title":"Multiscale geovisual analysis of knowledge innovation patterns using big scholarly data","authors":"Chenyu Zuo, L. Ding, Zhuoni Yang, L. Meng","doi":"10.1080/19475683.2022.2027012","DOIUrl":null,"url":null,"abstract":"ABSTRACT Knowledge innovation is a key factor in industrial development and regional economic growth. Understanding regional knowledge innovation and its dynamic changes is one of the fundamental tasks of regional policy-makers and business decision-makers. Although many existing studies have been conducted to support in understanding knowledge innovation patterns, data-driven and intuitive visual analysis of georeferenced knowledge innovation has not been sufficiently studied. In this work, we analysed knowledge innovation by visually exploring big georeferenced scholarly data. More specifically, we first applied network analysis and statistical methods to derive key measures (e.g., the number of publications and academic collaborations) of knowledge innovation with multiple spatial scales. We then designed geovisualizations to explicitly represent the multiscale spatiotemporal patterns and relations. We integrated the analytical methods and geovisualizations into an interactive tool to facilitate stakeholders’ visual learning and analysis of knowledge innovation with a spatial focus. Our work shows that geovisualizations have great potential in supporting complex geoinformation communication in knowledge innovation.","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"484 1","pages":"197 - 212"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2022.2027012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Knowledge innovation is a key factor in industrial development and regional economic growth. Understanding regional knowledge innovation and its dynamic changes is one of the fundamental tasks of regional policy-makers and business decision-makers. Although many existing studies have been conducted to support in understanding knowledge innovation patterns, data-driven and intuitive visual analysis of georeferenced knowledge innovation has not been sufficiently studied. In this work, we analysed knowledge innovation by visually exploring big georeferenced scholarly data. More specifically, we first applied network analysis and statistical methods to derive key measures (e.g., the number of publications and academic collaborations) of knowledge innovation with multiple spatial scales. We then designed geovisualizations to explicitly represent the multiscale spatiotemporal patterns and relations. We integrated the analytical methods and geovisualizations into an interactive tool to facilitate stakeholders’ visual learning and analysis of knowledge innovation with a spatial focus. Our work shows that geovisualizations have great potential in supporting complex geoinformation communication in knowledge innovation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大数据的知识创新模式多尺度地理可视化分析
知识创新是产业发展和区域经济增长的关键因素。了解区域知识创新及其动态变化是区域决策者和企业决策者的基本任务之一。虽然已有许多研究支持对知识创新模式的理解,但对地理参考知识创新的数据驱动和直观可视化分析研究还不够。在这项工作中,我们通过可视化地探索大的地理参考学术数据来分析知识创新。更具体地说,我们首先应用网络分析和统计方法,得出了多空间尺度下知识创新的关键指标(如出版物数量和学术合作数量)。然后,我们设计了地理可视化来明确地表示多尺度时空模式和关系。我们将分析方法和地理可视化整合到一个交互式工具中,以促进利益相关者以空间为焦点的视觉学习和知识创新分析。我们的工作表明,地理可视化在支持知识创新中的复杂地理信息交流方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of GIS
Annals of GIS Multiple-
CiteScore
8.30
自引率
2.00%
发文量
31
期刊最新文献
Zero watermarking algorithm for BIM data based on distance partitioning and local feature Controlling for spatial confounding and spatial interference in causal inference: modelling insights from a computational experiment Application of GIS and fuzzy sets to small-scale site suitability assessment for extensive brackish water aquaculture Revealing intra-urban hierarchical spatial structure through representation learning by combining road network abstraction model and taxi trajectory data The time- and distance-decay effects of hurricane relevancy on social media: an empirical study of three hurricanes in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1