Algorithm 1017

Pavel Škrabánek, N. Martínková
{"title":"Algorithm 1017","authors":"Pavel Škrabánek, N. Martínková","doi":"10.1145/3451389","DOIUrl":null,"url":null,"abstract":"Fuzzy regression provides an alternative to statistical regression when the model is indefinite, the relationships between model parameters are vague, the sample size is low, or the data are hierarchically structured. Such cases allow to consider the choice of a regression model based on the fuzzy set theory. In fuzzyreg, we implement fuzzy linear regression methods that differ in the expectations of observational data types, outlier handling, and parameter estimation method. We provide a wrapper function that prepares data for fitting fuzzy linear models with the respective methods from a syntax established in R for fitting regression models. The function fuzzylm thus provides a novel functionality for R through standardized operations with fuzzy numbers. Additional functions allow for conversion of real-value variables to be fuzzy numbers, printing, summarizing, model plotting, and calculation of model predictions from new data using supporting functions that perform arithmetic operations with triangular fuzzy numbers. Goodness of fit and total error of the fit measures allow model comparisons. The package contains a dataset named bats with measurements of temperatures of hibernating bats and the mean annual surface temperature reflecting the climate at the sampling sites. The predictions from fuzzy linear models fitted to this dataset correspond well to the observed biological phenomenon. Fuzzy linear regression has great potential in predictive modeling where the data structure prevents statistical analysis and the modeled process exhibits inherent fuzziness.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"37 1","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3451389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fuzzy regression provides an alternative to statistical regression when the model is indefinite, the relationships between model parameters are vague, the sample size is low, or the data are hierarchically structured. Such cases allow to consider the choice of a regression model based on the fuzzy set theory. In fuzzyreg, we implement fuzzy linear regression methods that differ in the expectations of observational data types, outlier handling, and parameter estimation method. We provide a wrapper function that prepares data for fitting fuzzy linear models with the respective methods from a syntax established in R for fitting regression models. The function fuzzylm thus provides a novel functionality for R through standardized operations with fuzzy numbers. Additional functions allow for conversion of real-value variables to be fuzzy numbers, printing, summarizing, model plotting, and calculation of model predictions from new data using supporting functions that perform arithmetic operations with triangular fuzzy numbers. Goodness of fit and total error of the fit measures allow model comparisons. The package contains a dataset named bats with measurements of temperatures of hibernating bats and the mean annual surface temperature reflecting the climate at the sampling sites. The predictions from fuzzy linear models fitted to this dataset correspond well to the observed biological phenomenon. Fuzzy linear regression has great potential in predictive modeling where the data structure prevents statistical analysis and the modeled process exhibits inherent fuzziness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算法1017
当模型是不确定的,模型参数之间的关系模糊,样本量小,或者数据是分层结构时,模糊回归提供了一种替代统计回归的方法。这种情况允许考虑基于模糊集理论的回归模型的选择。在fuzzyreg中,我们实现了不同于观测数据类型、异常值处理和参数估计方法的模糊线性回归方法。我们提供了一个包装器函数,该函数用R中建立的用于拟合回归模型的语法中的相应方法准备拟合模糊线性模型的数据。因此,函数fuzzylm通过模糊数的标准化操作为R提供了一种新的功能。附加函数允许将实值变量转换为模糊数、打印、汇总、模型绘制以及使用支持函数从新数据计算模型预测,这些支持函数对三角模糊数执行算术运算。拟合优度和拟合措施的总误差允许模型比较。该包包含一个名为蝙蝠的数据集,其中测量了冬眠蝙蝠的温度和反映采样地点气候的年平均地表温度。从模糊线性模型拟合到这个数据集的预测与观察到的生物现象很好地对应。模糊线性回归在预测建模中具有很大的潜力,因为数据结构阻碍了统计分析,并且建模过程具有固有的模糊性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configurable Open-source Data Structure for Distributed Conforming Unstructured Homogeneous Meshes with GPU Support Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm Toward Accurate and Fast Summation Algorithm 1028: VTMOP: Solver for Blackbox Multiobjective Optimization Problems Parallel QR Factorization of Block Low-rank Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1