Linear and Nonlinear Wave-Current Interactions over Constant Water Depth

X. Feng
{"title":"Linear and Nonlinear Wave-Current Interactions over Constant Water Depth","authors":"X. Feng","doi":"10.18178/jocet.2018.6.2.450","DOIUrl":null,"url":null,"abstract":"Abstract—Nowadays, the exploration of the ocean energy has become necessary and attracted more and more attention by the researchers all over the world due to the pollution and energy depletion issues caused by the consumption of fossil energies. As designing and hydrodynamic analysis of the energy converters in physical experimental tank are both time consuming and expensive, many researchers have developed numerical wave tanks to investigate the problem of wave and current interacting with the energy converters. In this paper, a numerical wave and current tank of the viscous fluid with constant depth is established based on the Reynolds-Averaged Navier-Stokes (RANS) equations with k-ε turbulence closure scheme. The volume of fluid (VOF) method is applied to accurately capture the water free surface. The wave generation, wave absorption and current absorption are accomplished by using the analytic relaxation approach. Based on the numerical wave and current tank established here, the linear wave and nonlinear wave-current interactions are simulated and analyzed. The result shows that the wave generated by using the analytic relaxation approach has the feature of high quality and stability. The numerical results of the linear wave-current interaction are compared with the analytical solution based on the perturbation method, which shows that the numerical wave and current tank established here is accurate and valid. Finally, the influence of current velocity on the wave parameters and the variation of wave crests with wave slopes for linear and nonlinear wavecurrent interactions are also numerically investigated.","PeriodicalId":15527,"journal":{"name":"Journal of Clean Energy Technologies","volume":"71 1","pages":"143-149"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clean Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/jocet.2018.6.2.450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract—Nowadays, the exploration of the ocean energy has become necessary and attracted more and more attention by the researchers all over the world due to the pollution and energy depletion issues caused by the consumption of fossil energies. As designing and hydrodynamic analysis of the energy converters in physical experimental tank are both time consuming and expensive, many researchers have developed numerical wave tanks to investigate the problem of wave and current interacting with the energy converters. In this paper, a numerical wave and current tank of the viscous fluid with constant depth is established based on the Reynolds-Averaged Navier-Stokes (RANS) equations with k-ε turbulence closure scheme. The volume of fluid (VOF) method is applied to accurately capture the water free surface. The wave generation, wave absorption and current absorption are accomplished by using the analytic relaxation approach. Based on the numerical wave and current tank established here, the linear wave and nonlinear wave-current interactions are simulated and analyzed. The result shows that the wave generated by using the analytic relaxation approach has the feature of high quality and stability. The numerical results of the linear wave-current interaction are compared with the analytical solution based on the perturbation method, which shows that the numerical wave and current tank established here is accurate and valid. Finally, the influence of current velocity on the wave parameters and the variation of wave crests with wave slopes for linear and nonlinear wavecurrent interactions are also numerically investigated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
恒定水深下的线性和非线性波流相互作用
摘要:如今,由于化石能源的消耗所带来的污染和能源枯竭问题,对海洋能的开发已成为必要,并越来越受到世界各国研究者的重视。由于物理实验槽中能量转换器的设计和水动力分析既耗时又昂贵,许多研究人员开发了数值波浪槽来研究波流与能量转换器的相互作用问题。本文基于k-ε湍流闭合格式的reynolds -平均Navier-Stokes (RANS)方程,建立了定深粘性流体的数值波流槽。采用流体体积法(VOF)精确捕获水的自由表面。波的产生、波的吸收和电流的吸收是用解析松弛法完成的。在建立数值波流槽的基础上,对线性波和非线性波流相互作用进行了模拟和分析。结果表明,用解析松弛法产生的波具有高质量和稳定性的特点。将线性波流相互作用的数值结果与基于摄动法的解析解进行了比较,表明本文建立的数值波流槽是准确有效的。最后,数值研究了在线性和非线性波流相互作用下,流速对波参数的影响以及波峰随波斜率的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction to a New Journal: Clean Energy Technologies Journal (CETJ) Cobalt decorated egg-shell-type activated carbon pellets: Catalytic application in hydrogen release from boron based solid fuel A new line stability index for voltage stability analysis based on line loading Optimization of air inlet features of an active indirect mode solar dryer: A response surface approach A review of water heating systems: A Focus on hybrid technologies prospect in Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1