{"title":"Tensor-patch-based discriminative marginalized least squares regression for membranous nephropathy hyperspectral data classification","authors":"Tianhong Chen, Meng Lv, Yue Yang, Tianqi Tu, Wei Li, Wenge Li","doi":"10.1117/12.2604862","DOIUrl":null,"url":null,"abstract":"Least squares regression (LSR)-based classifiers are effective in multi-classification tasks. For hyperspectral image (HSI) classification, the spatial structure information usually helps to improve the performance, however, most existing LSRbased methods use the spectral-vector as input which ignore the important correlations in the spatial domain. To solve the drawback, a tensor-patch-based discriminative marginalized least squares regression (TPDMLSR) is proposed to modify discriminative marginalized least squares regression (DMLSR) with consideration of inter-class separability by employing the region covariance matrix (RCM). RCM is adopted to exploit a region of interest around each hyperspectral pixel to characterize the intrinsic spatial geometric structure of HSI. Specifically, TPDMLSR not only maintains the ascendancy of DMLSR, but also preserves the spatial-spectral structure and enhances the ability of class discrimination for regression by learning the tensor-patch manifold term with a new region covariance descriptor and measuring the inter-class similarity more accurately. The experimental results on membranous nephropathy (MN) dataset validate that TPDMLSR significantly outperforms LSR-based methods reflected in sensitivity, overall accuracy (OA), average accuracy (AA) and Kappa coefficient (Kappa).","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"31 1","pages":"119130A - 119130A-8"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Least squares regression (LSR)-based classifiers are effective in multi-classification tasks. For hyperspectral image (HSI) classification, the spatial structure information usually helps to improve the performance, however, most existing LSRbased methods use the spectral-vector as input which ignore the important correlations in the spatial domain. To solve the drawback, a tensor-patch-based discriminative marginalized least squares regression (TPDMLSR) is proposed to modify discriminative marginalized least squares regression (DMLSR) with consideration of inter-class separability by employing the region covariance matrix (RCM). RCM is adopted to exploit a region of interest around each hyperspectral pixel to characterize the intrinsic spatial geometric structure of HSI. Specifically, TPDMLSR not only maintains the ascendancy of DMLSR, but also preserves the spatial-spectral structure and enhances the ability of class discrimination for regression by learning the tensor-patch manifold term with a new region covariance descriptor and measuring the inter-class similarity more accurately. The experimental results on membranous nephropathy (MN) dataset validate that TPDMLSR significantly outperforms LSR-based methods reflected in sensitivity, overall accuracy (OA), average accuracy (AA) and Kappa coefficient (Kappa).