Amorphous Porous Molybdenum Dioxide as an Efficient Supercapacitor Electrode Material

IF 1.5 4区 材料科学 Q3 CRYSTALLOGRAPHY Crystal Research and Technology Pub Date : 2021-10-10 DOI:10.1002/crat.202100083
Shuhua Liu, Li Tian, Xiang Qi
{"title":"Amorphous Porous Molybdenum Dioxide as an Efficient Supercapacitor Electrode Material","authors":"Shuhua Liu, Li Tian, Xiang Qi","doi":"10.1002/crat.202100083","DOIUrl":null,"url":null,"abstract":"Molybdenum dioxide (MoO2) with amorphous and porous nanostructure is synthesized via a facile hydrothermal methodology in a short reaction time and used as a supercapacitors electrode material. X‐ray diffraction, transmission electron microscopy and cyclic voltammetry, galvanostatic charge–discharge measurements, and cycle stability tests of the amorphous and porous MoO2 are investigated. The novel‐innovative structure conduces to the high specific capacity of 444.7 F g−1 at 1 A g−1 in 0.5 m H2SO4 solution. After 1000 cycles, 92% capacity is retained, indicating that the as‐prepared electrodes possess excellent stabilities. Furthermore, at a high current density of 8 A g−1, the capacity can reach 210.67 F g−1, exhibiting outstanding rate characteristics. The amorphous and porous MoO2 achieves preeminent electrochemical performance, which can be attributed to the short ion diffusion routes and can provide reversible and fast faradic reactions and the porous structure will increase the utilization of the electrode materials. Besides that, the amorphous and porous MoO2 will let each MoO2 nanoparticles to participate in electrochemical reactions due to the full contact between electrolyte and MoO2. Therefore, MoO2 will be a promising anode material for aqueous supercapacitors.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"13 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202100083","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 1

Abstract

Molybdenum dioxide (MoO2) with amorphous and porous nanostructure is synthesized via a facile hydrothermal methodology in a short reaction time and used as a supercapacitors electrode material. X‐ray diffraction, transmission electron microscopy and cyclic voltammetry, galvanostatic charge–discharge measurements, and cycle stability tests of the amorphous and porous MoO2 are investigated. The novel‐innovative structure conduces to the high specific capacity of 444.7 F g−1 at 1 A g−1 in 0.5 m H2SO4 solution. After 1000 cycles, 92% capacity is retained, indicating that the as‐prepared electrodes possess excellent stabilities. Furthermore, at a high current density of 8 A g−1, the capacity can reach 210.67 F g−1, exhibiting outstanding rate characteristics. The amorphous and porous MoO2 achieves preeminent electrochemical performance, which can be attributed to the short ion diffusion routes and can provide reversible and fast faradic reactions and the porous structure will increase the utilization of the electrode materials. Besides that, the amorphous and porous MoO2 will let each MoO2 nanoparticles to participate in electrochemical reactions due to the full contact between electrolyte and MoO2. Therefore, MoO2 will be a promising anode material for aqueous supercapacitors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非晶多孔二氧化钼作为高效超级电容器电极材料
采用水热法在短时间内合成了具有非晶多孔纳米结构的二氧化钼(MoO2),并将其用作超级电容器电极材料。研究了非晶和多孔MoO2的X射线衍射、透射电子显微镜和循环伏安法、恒流充放电测量和循环稳定性测试。这种新颖的创新结构有助于在0.5 m H2SO4溶液中,在1 A g−1时达到444.7 F g−1的高比容量。经过1000次循环后,92%的容量保留,表明制备的电极具有优异的稳定性。此外,在8 a g−1的高电流密度下,容量可达到210.67 F g−1,具有出色的速率特性。无定形多孔MoO2具有优异的电化学性能,这主要归功于离子扩散路径短,可以提供可逆和快速的faradic反应,多孔结构将提高电极材料的利用率。此外,由于电解质与MoO2的充分接触,无定形和多孔的MoO2将使每个MoO2纳米颗粒参与电化学反应。因此,MoO2将是一种很有前途的水性超级电容器负极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
期刊最新文献
Determination of Thermal Properties of Carbon Materials above 2000 °C for Application in High Temperature Crystal Growth Development of the VGF Crystal Growth Recipe: Intelligent Solutions of Ill‐Posed Inverse Problems using Images and Numerical Data Masthead: Crystal Research and Technology 12'2021 (Crystal Research and Technology 12/2021) Masthead: Crystal Research and Technology 11'2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1