Application of offset estimator of differential entropy and mutual information with multivariate data

I. Marín-Franch, Martín Sanz-Sabater, David H. Foster
{"title":"Application of offset estimator of differential entropy and mutual information with multivariate data","authors":"I. Marín-Franch, Martín Sanz-Sabater, David H. Foster","doi":"10.1017/exp.2022.14","DOIUrl":null,"url":null,"abstract":"Abstract Numerical estimators of differential entropy and mutual information can be slow to converge as sample size increases. The offset Kozachenko–Leonenko (KLo) method described here implements an offset version of the Kozachenko–Leonenko estimator that can markedly improve convergence. Its use is illustrated in applications to the comparison of trivariate data from successive scene color images and the comparison of univariate data from stereophonic music tracks. Publicly available code for KLo estimation of both differential entropy and mutual information is provided for R, Python, and MATLAB computing environments at https://github.com/imarinfr/klo.","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2022.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Numerical estimators of differential entropy and mutual information can be slow to converge as sample size increases. The offset Kozachenko–Leonenko (KLo) method described here implements an offset version of the Kozachenko–Leonenko estimator that can markedly improve convergence. Its use is illustrated in applications to the comparison of trivariate data from successive scene color images and the comparison of univariate data from stereophonic music tracks. Publicly available code for KLo estimation of both differential entropy and mutual information is provided for R, Python, and MATLAB computing environments at https://github.com/imarinfr/klo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微分熵和互信息偏置估计在多元数据中的应用
随着样本大小的增加,微分熵和互信息的数值估计收敛速度较慢。这里描述的偏移Kozachenko-Leonenko (KLo)方法实现了Kozachenko-Leonenko估计器的偏移版本,可以显著提高收敛性。它的用途在应用中说明了比较从连续的场景彩色图像的三变量数据和比较立体声音乐轨道的单变量数据。在https://github.com/imarinfr/klo上提供了用于R、Python和MATLAB计算环境的微分熵和互信息的KLo估计的公开可用代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
THE COST OF PAEDIATRIC ABDOMINAL TUBERCULOSIS TREATMENT IN INDIA: EVIDENCE FROM A TEACHING HOSPITAL On L-derivatives and biextensions of Calabi–Yau motives Handedness and test anxiety: An examination of mixed-handed and consistent-handed students Analysis of declining trends in sugarcane yield at Wonji-Shoa Sugar Estate, Central Ethiopia Raw driving data of passenger cars considering traffic conditions in Semnan city
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1