S. K. Sonbhadra, Sonali Agarwal, M. Syafrullah, K. Adiyarta
{"title":"Person tracking with non-overlapping multiple cameras","authors":"S. K. Sonbhadra, Sonali Agarwal, M. Syafrullah, K. Adiyarta","doi":"10.23919/EECSI50503.2020.9251869","DOIUrl":null,"url":null,"abstract":"Monitoring and tracking of any target in a surveillance system is an important task. When these targets are human then this problem comes under person identification and tracking. At present, large scale smart video surveillance system is an essential component for any commercial or public campus. Since field of view (FOV) of a camera is limited; for large area monitoring, multiple cameras are needed at different locations. This paper proposes a novel model for tracking a person under multiple non-overlapping cameras. It builds the reference signature of the person at the beginning of the tracking system to match with the upcoming signatures captured by other cameras within the specified area of observation with the help of trained support vector machine (SVM) between two cameras. For experiments, wide area re-identification dataset (WARD) and a real-time scenario have been used with color, shape and texture features for person's re-identification.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"06 1","pages":"137-143"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Monitoring and tracking of any target in a surveillance system is an important task. When these targets are human then this problem comes under person identification and tracking. At present, large scale smart video surveillance system is an essential component for any commercial or public campus. Since field of view (FOV) of a camera is limited; for large area monitoring, multiple cameras are needed at different locations. This paper proposes a novel model for tracking a person under multiple non-overlapping cameras. It builds the reference signature of the person at the beginning of the tracking system to match with the upcoming signatures captured by other cameras within the specified area of observation with the help of trained support vector machine (SVM) between two cameras. For experiments, wide area re-identification dataset (WARD) and a real-time scenario have been used with color, shape and texture features for person's re-identification.