Feliciana M. E. Manuel, S. Saide, Felermino M. D. A. Ali, Sanae Lotfi
{"title":"Ocular Cataract Identification Using Deep Convolutional Neural Networks","authors":"Feliciana M. E. Manuel, S. Saide, Felermino M. D. A. Ali, Sanae Lotfi","doi":"10.1109/icABCD59051.2023.10220532","DOIUrl":null,"url":null,"abstract":"Ocular cataract is among diseases that result in blindness if not treated in time. It affects people worldwide, primarily in underdeveloped countries. This health problem affects the quality of patients' lives. However, early diagnosis avoids blindness and allows the patient to have appropriate treatment. Developing countries, especially those with low income, have a precarious health system, even in the ophthalmology sector, where equipment is lacking. This research aims to develop a deep learning-based model to detect ocular cataracts based on retinal images. We collect 1000 retinal images from Kaggle, which are then equally divided into two classes: with and without cataracts. We then use several neural architectures to correctly classify these images, including ResNet18, ResNet34, InceptionResNetV2, and InceptionV4. We demonstrate that ResNet18 outperforms the other architectures, reaching 95.5% accuracy score. Our results suggest that deep convolutional neural networks can achieve a significant performance in ocular cataracts classification using retinal images.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"259 1","pages":"1-5"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/icABCD59051.2023.10220532","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Ocular cataract is among diseases that result in blindness if not treated in time. It affects people worldwide, primarily in underdeveloped countries. This health problem affects the quality of patients' lives. However, early diagnosis avoids blindness and allows the patient to have appropriate treatment. Developing countries, especially those with low income, have a precarious health system, even in the ophthalmology sector, where equipment is lacking. This research aims to develop a deep learning-based model to detect ocular cataracts based on retinal images. We collect 1000 retinal images from Kaggle, which are then equally divided into two classes: with and without cataracts. We then use several neural architectures to correctly classify these images, including ResNet18, ResNet34, InceptionResNetV2, and InceptionV4. We demonstrate that ResNet18 outperforms the other architectures, reaching 95.5% accuracy score. Our results suggest that deep convolutional neural networks can achieve a significant performance in ocular cataracts classification using retinal images.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.