Measuring statistical learning by eye-tracking

Tamás Zolnai, Dominika Réka Dávid, O. Pesthy, Marton Nemeth, Mariann M. Kiss, Márton Nagy, D. Németh
{"title":"Measuring statistical learning by eye-tracking","authors":"Tamás Zolnai, Dominika Réka Dávid, O. Pesthy, Marton Nemeth, Mariann M. Kiss, Márton Nagy, D. Németh","doi":"10.1017/exp.2022.8","DOIUrl":null,"url":null,"abstract":"Abstract Statistical learning—the skill to pick up probability-based regularities of the environment—plays a crucial role in adapting to the environment and learning perceptual, motor, and language skills in healthy and clinical populations. Here, we developed a new method to measure statistical learning without any manual responses. We used the Alternating Serial Reaction Time (ASRT) task, adapted to eye-tracker, which, besides measuring reaction times (RTs), enabled us to track learning-dependent anticipatory eye movements. We found robust, interference-resistant learning on RT; moreover, learning-dependent anticipatory eye movements were even more sensitive measures of statistical learning on this task. Our method provides a way to apply the widely used ASRT task to operationalize statistical learning in clinical populations where the use of manual tasks is hindered, such as in Parkinson’s disease. Furthermore, it also enables future basic research to use a more sensitive version of this task to measure predictive processing.","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2022.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Statistical learning—the skill to pick up probability-based regularities of the environment—plays a crucial role in adapting to the environment and learning perceptual, motor, and language skills in healthy and clinical populations. Here, we developed a new method to measure statistical learning without any manual responses. We used the Alternating Serial Reaction Time (ASRT) task, adapted to eye-tracker, which, besides measuring reaction times (RTs), enabled us to track learning-dependent anticipatory eye movements. We found robust, interference-resistant learning on RT; moreover, learning-dependent anticipatory eye movements were even more sensitive measures of statistical learning on this task. Our method provides a way to apply the widely used ASRT task to operationalize statistical learning in clinical populations where the use of manual tasks is hindered, such as in Parkinson’s disease. Furthermore, it also enables future basic research to use a more sensitive version of this task to measure predictive processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过眼动追踪测量统计学习
统计学习是一种获取基于概率的环境规律的技能,在适应环境和学习健康和临床人群的感知、运动和语言技能方面起着至关重要的作用。在这里,我们开发了一种新的方法来测量统计学习,而不需要任何手动响应。我们使用了交替连续反应时间(ASRT)任务,该任务适用于眼动仪,除了测量反应时间(RTs)外,还使我们能够跟踪学习依赖的预期眼动。我们在RT上发现了稳健的、抗干扰的学习;此外,在这项任务中,学习依赖的预期眼动是更敏感的统计学习指标。我们的方法提供了一种将广泛使用的ASRT任务应用于临床人群的统计学习的方法,在这些人群中,手工任务的使用受到阻碍,例如帕金森病。此外,它还使未来的基础研究能够使用该任务的更敏感版本来测量预测处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
THE COST OF PAEDIATRIC ABDOMINAL TUBERCULOSIS TREATMENT IN INDIA: EVIDENCE FROM A TEACHING HOSPITAL On L-derivatives and biextensions of Calabi–Yau motives Handedness and test anxiety: An examination of mixed-handed and consistent-handed students Analysis of declining trends in sugarcane yield at Wonji-Shoa Sugar Estate, Central Ethiopia Raw driving data of passenger cars considering traffic conditions in Semnan city
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1