Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency

Emil Björnson, J. Hoydis, L. Sanguinetti
{"title":"Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency","authors":"Emil Björnson, J. Hoydis, L. Sanguinetti","doi":"10.1561/2000000093","DOIUrl":null,"url":null,"abstract":"Massive multiple-input multiple-output MIMO is one of themost promising technologies for the next generation of wirelesscommunication networks because it has the potential to providegame-changing improvements in spectral efficiency SE and energyefficiency EE. This monograph summarizes many years ofresearch insights in a clear and self-contained way and providesthe reader with the necessary knowledge and mathematical toolsto carry out independent research in this area. Starting froma rigorous definition of Massive MIMO, the monograph coversthe important aspects of channel estimation, SE, EE, hardwareefficiency HE, and various practical deployment considerations.From the beginning, a very general, yet tractable, canonical systemmodel with spatial channel correlation is introduced. This modelis used to realistically assess the SE and EE, and is later extendedto also include the impact of hardware impairments. Owing tothis rigorous modeling approach, a lot of classic \"wisdom\" aboutMassive MIMO, based on too simplistic system models, is shownto be questionable.","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"259 1","pages":"154-655"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1218","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1218

Abstract

Massive multiple-input multiple-output MIMO is one of themost promising technologies for the next generation of wirelesscommunication networks because it has the potential to providegame-changing improvements in spectral efficiency SE and energyefficiency EE. This monograph summarizes many years ofresearch insights in a clear and self-contained way and providesthe reader with the necessary knowledge and mathematical toolsto carry out independent research in this area. Starting froma rigorous definition of Massive MIMO, the monograph coversthe important aspects of channel estimation, SE, EE, hardwareefficiency HE, and various practical deployment considerations.From the beginning, a very general, yet tractable, canonical systemmodel with spatial channel correlation is introduced. This modelis used to realistically assess the SE and EE, and is later extendedto also include the impact of hardware impairments. Owing tothis rigorous modeling approach, a lot of classic "wisdom" aboutMassive MIMO, based on too simplistic system models, is shownto be questionable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模MIMO网络:频谱、能量和硬件效率
大规模多输入多输出MIMO是下一代无线通信网络中最有前途的技术之一,因为它有可能在频谱效率SE和能效EE方面提供改变游戏规则的改进。这本专著总结了多年的研究见解在一个清晰和独立的方式,并提供了必要的知识和数学工具的读者进行独立研究在这一领域。本专著从大规模MIMO的严格定义出发,涵盖了信道估计、SE、EE、硬件效率HE和各种实际部署考虑的重要方面。从一开始,介绍了一个非常一般的,但易于处理的,具有空间信道相关的规范系统模型。该模型用于实际评估SE和EE,后来扩展到也包括硬件损伤的影响。由于这种严格的建模方法,许多关于大规模MIMO的经典“智慧”,基于过于简单的系统模型,被证明是值得怀疑的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Graph Signal Processing: High Dimensional Spaces, Models and Structures An Introduction to Quantum Machine Learning for Engineers Signal Decomposition Using Masked Proximal Operators Online Component Analysis, Architectures and Applications Wireless for Machine Learning: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1