{"title":"Non-covalent chemical functionalization of micron-sized styrene-butadiene rubber with silica particles via solid-state cryogenic mixing process","authors":"Mete Bakir","doi":"10.1177/14777606221145706","DOIUrl":null,"url":null,"abstract":"The effective, high-value reutilization of reclaimed rubber, obtained from end-of-life tires, in the production of new high-performance tires remains an environmental and technological challenge. Cryogenically ground micron-sized rubber particles demonstrate a significant promise to realize satisfactory physical performance measures in reclaimed rubber-based tires. However, the maximum useable content of the cryogenically ground micron-sized rubber particles to be incorporated into tires is strictly limited by their ineffective interfacial chemical interactions with the host pristine rubber matrix during the post-polymerization process. Here, this work presents the non-covalent chemical functionalization of the cryogenically ground micron-sized styrene-butadiene rubber particles with reactive silica particles via a solid-state cryogenic mixing process. The highly-scalable solid-state mixing process enables the sufficiently uniform and near-homogenous distribution of the silica particles on the micron-sized rubber particles. Scanning electron microscope images highlight the micron-sized rubber particles decorated with individual silica particles. Fourier transform infrared and solid-state nuclear magnetic resonance spectra of the functionalized micron-sized rubber particles demonstrate a non-covalent conjugation mechanism between the silica and rubber particles in which the chemical fingerprint of the prime rubber backbone chains remains chemically intact. The chemically functionalized cryogenically ground micron-sized rubber particles possess reactive silica particle sites that are ultimately designed to facilitate the participation of the recycled rubber particles in post-polymerization processes with host matrix which shall allow higher loading levels than the state-of-the-art configurations.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"68 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606221145706","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The effective, high-value reutilization of reclaimed rubber, obtained from end-of-life tires, in the production of new high-performance tires remains an environmental and technological challenge. Cryogenically ground micron-sized rubber particles demonstrate a significant promise to realize satisfactory physical performance measures in reclaimed rubber-based tires. However, the maximum useable content of the cryogenically ground micron-sized rubber particles to be incorporated into tires is strictly limited by their ineffective interfacial chemical interactions with the host pristine rubber matrix during the post-polymerization process. Here, this work presents the non-covalent chemical functionalization of the cryogenically ground micron-sized styrene-butadiene rubber particles with reactive silica particles via a solid-state cryogenic mixing process. The highly-scalable solid-state mixing process enables the sufficiently uniform and near-homogenous distribution of the silica particles on the micron-sized rubber particles. Scanning electron microscope images highlight the micron-sized rubber particles decorated with individual silica particles. Fourier transform infrared and solid-state nuclear magnetic resonance spectra of the functionalized micron-sized rubber particles demonstrate a non-covalent conjugation mechanism between the silica and rubber particles in which the chemical fingerprint of the prime rubber backbone chains remains chemically intact. The chemically functionalized cryogenically ground micron-sized rubber particles possess reactive silica particle sites that are ultimately designed to facilitate the participation of the recycled rubber particles in post-polymerization processes with host matrix which shall allow higher loading levels than the state-of-the-art configurations.
期刊介绍:
The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.