Potential human glioblastoma cancer markers identified with nanobody-based reverse proteomic approach

R. Komel
{"title":"Potential human glioblastoma cancer markers identified with nanobody-based reverse proteomic approach","authors":"R. Komel","doi":"10.4172/2155-952X.C1.054","DOIUrl":null,"url":null,"abstract":"Biological control, the use of antagonistic organisms that interfere with plant pathogens represent an ecological approach to overcome the problems caused by hazardous chemical pesticides applied in plant protection. The mycoparasite Trichoderma is an efficient bio-control agent excreting extracellular chitinases, β-1-3 glucanases and proteases. Cloning these genes into plants can induce their resistance to diseases. Moreover, this bio-control agent can induce systemic resistance (ISR) to diseases by priming the expression of several plant defense related genes which enables Trichoderma treated plants to be more resistant to subsequent pathogen infection. Root colonization by Trichoderma strains results in massive changes in plant metabolism leading to accumulation of antimicrobial compounds in the whole plant. Studies have demonstrated that Trichoderma can ameliorate also plant performance in the presence of various abiotic stresses such as drought, salinity and heavy metals. Understanding the molecular basis of the diverse modes of action Trichoderma can lead to a better environmental-friendly control of plant diseases.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology & biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-952X.C1.054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biological control, the use of antagonistic organisms that interfere with plant pathogens represent an ecological approach to overcome the problems caused by hazardous chemical pesticides applied in plant protection. The mycoparasite Trichoderma is an efficient bio-control agent excreting extracellular chitinases, β-1-3 glucanases and proteases. Cloning these genes into plants can induce their resistance to diseases. Moreover, this bio-control agent can induce systemic resistance (ISR) to diseases by priming the expression of several plant defense related genes which enables Trichoderma treated plants to be more resistant to subsequent pathogen infection. Root colonization by Trichoderma strains results in massive changes in plant metabolism leading to accumulation of antimicrobial compounds in the whole plant. Studies have demonstrated that Trichoderma can ameliorate also plant performance in the presence of various abiotic stresses such as drought, salinity and heavy metals. Understanding the molecular basis of the diverse modes of action Trichoderma can lead to a better environmental-friendly control of plant diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纳米体的反向蛋白质组学方法鉴定潜在的人类胶质母细胞瘤癌症标志物
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biodegradable microparticles with hierarchical topographical features influence mesenchymal stem cell behaviour Antimicrobial nano-fiber structures development to rejuvenate injured dura mater in brain surgery Cellulase production with Penicillium verruculosum strain in lab and pilot scale Human metaplastic breast carcinoma and decorin Epitranscriptomic blood biomarkers to manage psychiatric disorders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1