kdecopula: An R Package for the Kernel Estimation of Bivariate Copula Densities

T. Nagler
{"title":"kdecopula: An R Package for the Kernel Estimation of Bivariate Copula Densities","authors":"T. Nagler","doi":"10.18637/JSS.V084.I07","DOIUrl":null,"url":null,"abstract":"We describe the R package kdecopula (current version 0.9.0), which provides fast implementations of various kernel estimators for the copula density. Due to a variety of available plotting options it is particularly useful for the exploratory analysis of dependence structures. It can be further used for accurate nonparametric estimation of copula densities and resampling. The implementation features spline interpolation of the estimates to allow for fast evaluation of density estimates and integrals thereof. We utilize this for a fast renormalization scheme that ensures that estimates are bona fide copula densities and additionally improves the estimators' accuracy. The performance of the methods is illustrated by simulations.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V084.I07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

We describe the R package kdecopula (current version 0.9.0), which provides fast implementations of various kernel estimators for the copula density. Due to a variety of available plotting options it is particularly useful for the exploratory analysis of dependence structures. It can be further used for accurate nonparametric estimation of copula densities and resampling. The implementation features spline interpolation of the estimates to allow for fast evaluation of density estimates and integrals thereof. We utilize this for a fast renormalization scheme that ensures that estimates are bona fide copula densities and additionally improves the estimators' accuracy. The performance of the methods is illustrated by simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二元Copula密度核估计的R包
我们描述了R包kdecopula(当前版本0.9.0),它为copula密度提供了各种内核估计器的快速实现。由于有多种可用的绘图选项,它对于依赖性结构的探索性分析特别有用。它可以进一步用于精确的非参数估计耦合密度和重采样。该实现的特征是估计的样条插值,以允许快速评估密度估计及其积分。我们将其用于快速重整化方案,以确保估计是真实的联结密度,并进一步提高估计器的准确性。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1