Haoyu Li, Huixing Zhou, Chongwen Xu, Yen Wei, Xiuying Tang
{"title":"3D bioprinting and scaffold-free strategies for fabrication of multi-cellular tissues or organoids","authors":"Haoyu Li, Huixing Zhou, Chongwen Xu, Yen Wei, Xiuying Tang","doi":"10.36922/ijb.0135","DOIUrl":null,"url":null,"abstract":"The biofabrication of multi-cellular tissues or organoids (MTOs) has been challenging in regenerative medicine for decades. Currently, two primary technological approaches are being explored: scaffold-based strategies utilizing three-dimensional (3D) bioprinting techniques and scaffold-free strategies employing bioassembly techniques. 3D bioprinting techniques include jetting-based, extrusion-based, and vat photopolymerization-based methods, and bioassembly techniques include Kenzan, fluid-based manipulation and microfluid, bioprinting-assisted tissue emergence, and aspiration-assisted technology methods. Scaffold-based strategies primarily concentrate on the construction of scaffold structures to provide an extracellular environment, while scaffold-free strategies primarily emphasize the assembly methods of building blocks. Different biofabrication technologies have their advantages and limitations. This review provides an overview of the mechanisms, advantages, and limitations of scaffold-based and scaffold-free strategies in tissue engineering. It also compares the strengths and weaknesses of these two strategies, along with their respective suitability under different conditions. Moreover, the significant challenges in the future development of convergence strategies, specifically the integration of scaffold-based and scaffold-free approaches, are examined in an objective manner. This review concludes that integrating scaffold-based and scaffold-free strategies could overcome the problems in the biofabrication of MTOs. A novel fabrication method, the BioMicroMesh method, is proposed based on the convergence strategy. Concurrently, the development of a desktop-scale integrated intelligent biofabrication device, the BioMicroMesh system, is underway. This system is tailored to the BioMicroMesh method and incorporates cell aggregate spheroids preparation, 3D bioprinting, bioassembly, and multi-organoid co-culture functions, providing an objective perspective on its capabilities.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.0135","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The biofabrication of multi-cellular tissues or organoids (MTOs) has been challenging in regenerative medicine for decades. Currently, two primary technological approaches are being explored: scaffold-based strategies utilizing three-dimensional (3D) bioprinting techniques and scaffold-free strategies employing bioassembly techniques. 3D bioprinting techniques include jetting-based, extrusion-based, and vat photopolymerization-based methods, and bioassembly techniques include Kenzan, fluid-based manipulation and microfluid, bioprinting-assisted tissue emergence, and aspiration-assisted technology methods. Scaffold-based strategies primarily concentrate on the construction of scaffold structures to provide an extracellular environment, while scaffold-free strategies primarily emphasize the assembly methods of building blocks. Different biofabrication technologies have their advantages and limitations. This review provides an overview of the mechanisms, advantages, and limitations of scaffold-based and scaffold-free strategies in tissue engineering. It also compares the strengths and weaknesses of these two strategies, along with their respective suitability under different conditions. Moreover, the significant challenges in the future development of convergence strategies, specifically the integration of scaffold-based and scaffold-free approaches, are examined in an objective manner. This review concludes that integrating scaffold-based and scaffold-free strategies could overcome the problems in the biofabrication of MTOs. A novel fabrication method, the BioMicroMesh method, is proposed based on the convergence strategy. Concurrently, the development of a desktop-scale integrated intelligent biofabrication device, the BioMicroMesh system, is underway. This system is tailored to the BioMicroMesh method and incorporates cell aggregate spheroids preparation, 3D bioprinting, bioassembly, and multi-organoid co-culture functions, providing an objective perspective on its capabilities.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.