MetaGanFi: Cross-Domain Unseen Individual Identification Using WiFi Signals

Jin Zhang, Zhuangzhuang Chen, Chengwen Luo, Bo Wei, S. Kanhere, Jian-qiang Li
{"title":"MetaGanFi: Cross-Domain Unseen Individual Identification Using WiFi Signals","authors":"Jin Zhang, Zhuangzhuang Chen, Chengwen Luo, Bo Wei, S. Kanhere, Jian-qiang Li","doi":"10.1145/3550306","DOIUrl":null,"url":null,"abstract":"Human has an unique gait and prior works show increasing potentials in using WiFi signals to capture the unique signature of individuals’ gait. However, existing WiFi-based human identification (HI) systems have not been ready for real-world deployment due to various strong assumptions including identification of known users and sufficient training data captured in predefined domains such as fixed walking trajectory/orientation, WiFi layout (receivers locations) and multipath environment (deployment time and site). In this paper, we propose a WiFi-based HI system, MetaGanFi, which is able to accurately identify unseen individuals in uncontrolled domain with only one or few samples. To achieve this, the MetaGanFi proposes a domain unification model, CCG-GAN that utilizes a conditional cycle generative adversarial networks to filter out irrelevant perturbations incurred by interfering domains. Moreover, the MetaGanFi proposes a domain-agnostic meta learning model, DA-Meta that could quickly adapt from one/few data samples to accurately recognize unseen individuals. The comprehensive evaluation applied on a real-world dataset show that the MetaGanFi can identify unseen individuals with average accuracies of 87.25% and 93.50% for 1 and 5 available data samples (shot) cases, captured in varying trajectory and multipath environment, 86.84% and 91.25% for 1 and 5-shot cases in varying WiFi layout scenarios, while the overall inference process of domain unification and identification takes about 0.1 second per sample.","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"20 1","pages":"152:1-152:21"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Human has an unique gait and prior works show increasing potentials in using WiFi signals to capture the unique signature of individuals’ gait. However, existing WiFi-based human identification (HI) systems have not been ready for real-world deployment due to various strong assumptions including identification of known users and sufficient training data captured in predefined domains such as fixed walking trajectory/orientation, WiFi layout (receivers locations) and multipath environment (deployment time and site). In this paper, we propose a WiFi-based HI system, MetaGanFi, which is able to accurately identify unseen individuals in uncontrolled domain with only one or few samples. To achieve this, the MetaGanFi proposes a domain unification model, CCG-GAN that utilizes a conditional cycle generative adversarial networks to filter out irrelevant perturbations incurred by interfering domains. Moreover, the MetaGanFi proposes a domain-agnostic meta learning model, DA-Meta that could quickly adapt from one/few data samples to accurately recognize unseen individuals. The comprehensive evaluation applied on a real-world dataset show that the MetaGanFi can identify unseen individuals with average accuracies of 87.25% and 93.50% for 1 and 5 available data samples (shot) cases, captured in varying trajectory and multipath environment, 86.84% and 91.25% for 1 and 5-shot cases in varying WiFi layout scenarios, while the overall inference process of domain unification and identification takes about 0.1 second per sample.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MetaGanFi:基于WiFi信号的跨域不可见个人识别
人类具有独特的步态,先前的研究表明,利用WiFi信号捕捉个体独特的步态特征具有越来越大的潜力。然而,现有的基于WiFi的人类识别(HI)系统还没有为现实世界的部署做好准备,因为存在各种强假设,包括识别已知用户和在预定义领域(如固定的行走轨迹/方向、WiFi布局(接收器位置)和多路径环境(部署时间和地点)中捕获的足够的训练数据。在本文中,我们提出了一种基于wifi的HI系统MetaGanFi,该系统仅使用一个或几个样本即可准确识别非受控域中的未见个体。为了实现这一目标,MetaGanFi提出了一种域统一模型CCG-GAN,该模型利用条件循环生成对抗网络来过滤掉由干扰域引起的不相关扰动。此外,MetaGanFi提出了一个领域不可知论的元学习模型,DA-Meta,可以快速从一个/几个数据样本中适应,以准确识别未见过的个体。在一个真实数据集上的综合评价表明,MetaGanFi在不同轨迹和多路径环境下捕获的1和5个可用数据样本(镜头)情况下识别未见个体的平均准确率为87.25%和93.50%,在不同WiFi布局场景下捕获的1和5个可用数据样本(镜头)情况下识别未见个体的平均准确率为86.84%和91.25%,而域统一和识别的整体推理过程约为0.1秒/样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Subject 3D Human Mesh Construction Using Commodity WiFi UHead: Driver Attention Monitoring System Using UWB Radar DeltaLCA: Comparative Life-Cycle Assessment for Electronics Design Multimodal Daily-Life Logging in Free-living Environment Using Non-Visual Egocentric Sensors on a Smartphone Lateralization Effects in Electrodermal Activity Data Collected Using Wearable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1