Maalathi Challa, M. Ambika, S. Usharani, S. Batakurki, B. Yallur
{"title":"Modulation of Optical Band Gap of 2-Amino Terephthalic Acid Cu-MOFs Doped with Ag2O and rGO","authors":"Maalathi Challa, M. Ambika, S. Usharani, S. Batakurki, B. Yallur","doi":"10.4028/p-i3rcg6","DOIUrl":null,"url":null,"abstract":"The synthesized MOF with copper metal dopant has shown band gap around 1.5 eV which falls in the UV region of electromagnetic spectrum. This MOF with copper turns into nano/MOF composite with addition of Ag2O and rGO to it. The results of band gap of MOF/ Ag2O and MOF/rGO showed 1.904 eV and 1.639 eV respectively. This shift in band gap supports to use them as a UV and near visible light harvest catalyst and also assist in enhancing mechanical, thermal and structural behaviour of compounds. The enhancement of band gap of MOF/nanoMO is attributed to the quantum size effect.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"15 1","pages":"35 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-i3rcg6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The synthesized MOF with copper metal dopant has shown band gap around 1.5 eV which falls in the UV region of electromagnetic spectrum. This MOF with copper turns into nano/MOF composite with addition of Ag2O and rGO to it. The results of band gap of MOF/ Ag2O and MOF/rGO showed 1.904 eV and 1.639 eV respectively. This shift in band gap supports to use them as a UV and near visible light harvest catalyst and also assist in enhancing mechanical, thermal and structural behaviour of compounds. The enhancement of band gap of MOF/nanoMO is attributed to the quantum size effect.